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Chapter 1

Introduction

This habilitation thesis is based on my published articles about volatility modelling and fore-

casting. Articles therefore constitute the main part of the thesis. In addition, an introduction

of this habilitation serves as both introduction to this topic, as well as a brief nontechnical

summary of the work I have done in this field.

1.1 Volatility in financial markets

Financial markets play a very important role in the modern society, as they significantly

contribute to an efficient capital allocation. Therefore, their understanding is of utmost im-

portance. The most fundamental variables in studies about financial markets are returns and

volatility.

Return rt, a relative change in the price P of an asset from time t− 1 to t can be defined

as follows:

Pt = ln(Pt)− ln(Pt) (1.1)

Volatility is a measure of variability of returns. Volatility can be defined as a standard

deviation of returns. However, the term volatility is sometimes also used to denote vari-

ance of returns, or logarithm of variance/standard deviation. In many cases, it does not

matter which of these definitions is used, as these measures are monotonic transformations

of each other. For example, a sentence like "Volatility is increased around major macroeco-

nomic announcements." means the same no matter which definition of volatility has reader

in mind. Therefore, I will use the term volatility when it is not important to distinguish be-

tween these definitions, and I will be more specific about standard deviation / variance /

logarithmic variance whenever it is important.

In a simplest case, for example an estimation of monthly volatility from daily returns, it is

easy to estimate volatility directly from its definition. However, volatility is usually changes

from day to day, and therefore, some volatility models are needed.
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1.2 Traditional models based on daily returns

The era of volatility modeling started with Engle (1982), whose idea was generalized by

Bollerslev (1986). Daily asset returns rt can be described in the following way:

rt = µt + σtZt (1.2)

The drift µt can be very often approximated by an autoregressive process of first order, and

often even by a constant, or zero. The Zt is an innovation distributed according to some

given distribution, and σt is the volatility process. The Generalized autoregressive condi-

tional heteroskedacity (GARCH) model of Bollerslev (1986) specifies the σt process in the

following way:

σ2
t = α0 +

q

∑
i=1

αiZ2
t−i +

p

∑
j=1

β jσ
2
t−j (1.3)

where p is the number of lags of the conditional variance and q is the number of lags of

the squared errors. This model also imposes the following restrictions on the estimated

parameters:

α0 > 0, αi ≥ 0, βi ≥ 0 (1.4)

The GARCH model of Bollerslev (1986) has been extended and modified in many ways.

In equity markets, negative returns are usually followed by increased volatility. This effect

can be captured e.g. by models of Glosten et al. (1993) and Nelson (1991).

For example, the conditional variance in the Glosten, Jagannathan, Runkle GARCH (GJR-

GARCH(p,q)) model is specified as follows:

σ2
t = α0 +

q

∑
i=1

(αi + γi It−i) Z2
t−i +

p

∑
j=1

β jσ
2
t−j (1.5)

with the indicator function It−i specified as follows:

It−i =

 1 if Zi−t < 0, for i = 1, 2, . . . , q;

0 if Zt−i ≥ 0, for i = 1, 2, . . . , q.

and restrictions on the estimated parameters, where γi is the asymmetry parameter:

α0 > 0, αi ≥ 0, βi ≥ 0, αi + γi ≥ 0. (1.6)

It should be mentioned that GARCH models are not the only type of volatility models

based on daily returns. Taylor (1982) introduced stochastic volatility models. However, these
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models require more advanced estimation techniques than the GARCH models (Ghysels et

al., 1996; Harvey et al., 1994; Harvey & Shephard, 1996), and therefore have never become

as popular as GARCH models.

GARCH models has been extended in various ways, and some of them can be quite com-

plex. However, what have all the standard GARCH models in common is the data which are

used in their estimation - past returns, usually past daily returns. Past daily returns contain

only limited information about past daily volatility. Therefore, if we use data more infor-

mative about volatility, it should be possible to construct volatility models which perform

better. This is the field where I have been active, but obviously many other researchers has

explored this field too.

There are three most natural candidates for additional data in volatility models:

• to utilize not just closing price of the day, but also opening price, the highest price of

the day and the lowest price of the day

• to utilize intraday high-frequency data

• to extract volatility implied by option prices

The main benefit of daily high, low and opening price is that they are almost always

available, and therefore it is easy to use them. At the same time, they provide very large

improvements in the accuracy of volatility estimates relatively to squared returns.

Intraday high-frequency data can provide even more information about intraday volatil-

ity. Therefore, whenever these data are available, and high precision of volatility estimates is

needed, these data should be used. However, they are usually not publicly available without

a paid subscription, exist only for some assets, and only over approximately last 20 years.

Moreover, working with them requires special considerations, as they are subject to market

micro-structure noise, such as bid-ask spread.

Volatility implied by option prices has huge advantage that it is a forward-looking volatil-

ity measure. However, it can be utilized only for those assets where options with this asset

as an underlying exist.

1.3 Daily high-low range

Denote the opening price of the day t as Ot, the highest price Ht, the lowest price Lt, and

the closing Ct. The set of these four prices for each day should contain more information

about the volatility than daily returns. Intuitively, particularly the highest and the lowest

price of the day should be very useful in volatility estimation. This idea was first formalized
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by Parkinson (1980) and Garman and Klass (1980). In a similar manner as prices are usually

transformed into returns, it is useful to transform these prices into their return form in the

following way. Define:

ct = ln(Ct)− ln(Ot) (1.7)

ht = ln(Ht)− ln(Ot) (1.8)

lt = ln(Lt)− ln(Ot) (1.9)

Then the Parkinson (1980) estimator is defined as:

PKt =
(ht − lt)2

4ln2
(1.10)

while the Garman and Klass (1980) estimator is defined as:

GKt = 0.511 (ht − lt)
2 − 0.019 (ct(ht + lt)− 2htlt)− 0.383c2

t (1.11)

The difference ht − lt is sometimes called range, and therefore estimators based on this vari-

able are sometimes called range-based volatility estimators. Here belong also e.g. Rogers

and Satchell (1991) estimator:

RSt = ht(ht − ct) + lt(lt − ct) (1.12)

In the first paper of this habilitation, Molnár (2012), I study properties of range-based

volatility estimators. Range-based estimators can be conveniently utilized in any study

where more precise volatility estimates are desirable, see e.g. Kim et al. (2019).

It is quite intuitive that highest and lowest prices of the day could improve GARCH

models based on returns calculated from closing prices. In particular, squared residuals in

GARCH model serve as a proxy for variance in that particular day. Therefore, simple re-

placement of squared residuals by the variance estimated from the highest and lowest price

of the day should lead to better volatility model. This intuition is formalized and confirmed

in the second paper of this thesis, Molnár (2016), where I suggest and evaluate a Range-

GARCH model. Molnár (2016) is not the only paper which utilizes high-low range, see e.g.

Chou (2005) and Brandt and Jones (2006). However, both these papers model the high-low

range, while Range-GARCH model is a simple extension of the GARCH(1,1) model. The ad-

vantage of this approach is that is can be easily estimated in any software that can estimate

the GARCH model.

Early GARCH models were univariate models, they have been quickly generalized to
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multivariate models. Multivariate GARCH volatility models suffer from dimensionality

problem, as the number of estimated parameters increases quadraticaly with the number

of assets. Therefore, probably the most popular multivariate GARCH model is the dynamic

conditional correlation (DCC) model introduced independently by Engle (1982) and Tse and

Tsui (2002).

In the third paper of this habilitation, Fiszeder et al. (2019), we incorporate Parkinson

(1980) volatility estimator in the DCC model in a similar way as in Molnár (2016) and found

that the Range-GARCH DCC model outperforms the standard GARCH DCC model not only

in statistical sense, but also in terms of Value-at-Risk forecasts. Moreover, we find that the

DCC model extended with the Range-GARCH model works better than the DCC model

extended with the model of Chou (2005).

1.4 Realized volatility

Soon after the intraday high-frequency data became available for research, several people

understood the benefits of these data, and the idea of the realized volatility introduced (An-

dersen et al., 2001a; Andersen et al., 2001b; Barndorff-Nielsen & Shephard, 2002).

In principle, realized variance RV during the day t can be estimated in the following way:

RVt =
m

∑
j=1

r2
t,j (1.13)

where rt,j is the jth intraday return on day t, m is the number of intraday returns.

The formula above captures the idea behind the realized variance. In reality, this formula

is often extended to account for example for the autocorrelation in intraday returns (Liu et

al., 2015; Patton & Sheppard, 2009):

RVAC,t =

[
m

∑
j=1

r2
t,j + 2×

m−1

∑
j=1

rt,j+1rt,j

]
(1.14)

or the presence of jumps in the price, leading to estimators of bipower estimator of Barndorff-

Nielsen and Shephard, 2004:

RVBV,t =
1π

2
×

m−1

∑
j=1
|rt,j||rt,j+1| (1.15)

or median realized variance of Andersen et al., 2012:

RVMV,t =
mπ

(m− 1)(6− 4
√

3 + π)
×

m−1

∑
j=2

(med
(
|rt,j−1|, |rt,j|, |rt,j+1|

)
)2 (1.16)
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Even though estimation of realized volatility requires some effort, once we have the esti-

mates of realized volatility, it is usually very easy to work with it. Probably the first volatility

model based on realized variance is (Andersen et al., 2003). They find that models based on

realized variance perform better than standard GARCH models. This conclusion is reached

also by Horpestad et al. (2019). Volatility models based on realized variance have become

very popular. I have used them in several of my papers, for example Aalborg et al. (2019),

Haugom et al. (2014), Lyócsa and Molnár (2017, 2016), Lyócsa et al. (2016), Lyócsa et al.

(2017).

In the fifth paper of this habilitation, Lyócsa and Molnár (2018), we study the impact of

monetary policy announcements on stock market volatility in the U.S., Canada, Japan, the

U.K., Germany, France and Italy. We find that volatility is increased on the day of interest

rate announcements, and decreased for several days after the announcement. It would be

more much difficult to arrive to clear conclusions without using realized volatility.

Realized volatility can of course used also in multivariate volatility models. Example of

it is the fifth paper of this dissertation, Lyócsa et al. (2019). In this case we study volatility

forecasting for crude oil and natural gas. However, in this particular case, the multivariate

model does not perform better than univariate models.

1.5 Implied volatility

Price of the option depends on several parameters. One of these parameters is the volatility

of the underlying asset. Since other parameters, such as interest rate or time to maturity,

option pricing formula can be used to calculate a price for a given volatility. Moreover, since

the relationship between the option price and volatility is monotonous, also the opposite is

possible: for a given option price, it is possible to calculate volatility implied by the option.

The famous VIX index is an implied volatility, just not from one option, but from basket

of options chosen and weighted in such a way that it is a 30-day implied volatility. The VIX

index is often called the fear index, and it is one of the most followed financial indicators in

the world. As a result, similar indices has been constructed also for many other markets, see

Siriopoulos and Fassas (2019) for an overview. I have also contributed in this area (Birkelund

et al., 2015; Bugge et al., 2016).

Since implied volatility is forward-looking, it is a very useful measure for various pur-

poses. Even though implied volatility should not be interpreted directly as expected volatil-

ity (since it contains also risk premium), it is still very useful in volatility forecasting, as have

been confirmed by various studies (Christensen & Prabhala, 1998; Prokopczuk & Simen,

2014), including studies in which I participated (Bugge et al., 2016; Haugom et al., 2014).
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The volatility is such an important information about financial markets that nowadays

exists even derivatives on volatility, and this market is very active and growing. More specif-

ically, there exist option and futures contracts with the VIX index as an underlying asset, and

these derivatives have very interesting characteristics, see Bašta and Molnár (2019), Zhang

and Zhu (2006) and Bordonado et al. (2017).

The last paper of this habilitation utilizes implied volatility and historical volatility es-

timated via Parkinson (1980) estimator. In particular, we study comovement in the stock

market volatility and the oil market volatility, considering these both volatility measures.

We find that the implied volatility of the stock market slightly leads the implied volatility of

the oil market, while this feature is weaker between realized volatilities.
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1. Introduction

Asset volatility, ameasure of risk, plays a crucial role inmanyareas of
finance and economics. Therefore, volatility modelling and forecasting
become one of the most developed parts of financial econometrics.
However, since the volatility is not directly observable, the first problem
which must be dealt with before modelling or forecasting is always a
volatility measurement (or, more precisely, estimation).

Consider stock price over several days. From a statistician's point of
view, daily relative changes of stock price (stock returns) are almost
random. Moreover, even though daily stock returns are typically of a
magnitude of 1% or 2%, they are approximately equally often positive
and negative, making average daily return very close to zero. The most
naturalmeasure for howmuch stock price changes is the variance of the
stock returns. Variance can be easily calculated and it is a natural mea-
sure of the volatility. However, this way we can get only an average
volatility over an investigated time period. This might not be sufficient,
because volatility changes fromoneday to another.Whenwehave daily
closingprices andweneed toestimatevolatility onadaily basis, the only
estimate we have is squared (demeaned) daily return. This estimate is
very noisy, but since it is very often the only onewehave, it is commonly
used. In fact, we can look at most of the volatility models (e.g. GARCH

class of models or stochastic volatility models) in such a way that daily
volatility is first estimated as squared returns and consequently
processed by applying time series techniques.

When not only daily closing prices, but intraday high frequency data
are available too, we can estimate daily volatility more precisely. How-
ever, high frequency data are in many cases not available at all or
available only over a shorter time horizon and costly to obtain andwork
with. Moreover, due to market microstructure effects the volatility
estimation from high frequency data is rather a complex issue (see
Dacorogna, Gencay, Müller, Olsen, & Pictet, 2001).

However, closing prices are not the only easily available daily data.
For the most of financial assets, daily open, high and low prices are
available too. Range, the difference between high and low prices is a
natural candidate for the volatility estimation. The assumption that the
stock return follows a Brownian motion with zero drift during the day
allows Parkinson (1980) to formalize this intuition and derive a
volatility estimator for the diffusion parameter of the Brownianmotion.
This estimator based on the range (the difference between high and low
prices) is much less noisy than squared returns. Garman and Klass
(1980) subsequently introduce estimator based on open, high, low and
close prices,which is even less noisy. Even though these estimators have
existed formore than30 years, they have been rarely used in the past by
both academics andpractitioners. However, recently the literature using
the range-based volatility estimators started to grow (e.g. Alizadeh,
Brandt, and Diebold (2002), Brandt and Diebold (2006), Brandt and
Jones (2006), Chou (2005), Chou (2006), Chou and Liu (2010)). For an
overview see Chou et al. (2010).

International Review of Financial Analysis 23 (2012) 20–29

⁎ Norwegian University of Science and Technology, Department of Industrial
Economics and Technology Management, 7491 Trondheim, Norway.

E-mail address: Peter.Molnar@iot.ntnu.no.
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Despite increased interest in the range-based estimators, their
properties are sometimes somewhat imprecisely understood. One
particular problem is that despite the increased accuracy of these
estimators in comparison to squared returns, these estimators still only
provide a noisy estimate of volatility. However, in some manipulations
(e.g. division) people treat these estimators as if they were exact values
of the volatility. This can in turns lead to flawed conclusions, aswe show
later in the paper. Therefore we study these properties.

Our contributions are the following. First, when the underlying
assumptions of the range-based estimators hold, all of them are un-
biased. However, taking the square root of these estimators leads to
biased estimators of standard deviation. We study this bias. Second,
for a given true variance, distribution of the estimated variance de-
pends on the particular estimator. We study these distributions. Third,
we show how the range-based volatility estimators should be mod-
ified in the presence of opening jumps (stock price at the beginning of
the day typically differs from the closing stock price from the previous
day).

Fourth, the property we focus on is the distribution of returns
standardized by standard deviations. A question of interest is how this is
affected when the standard deviations are estimated from range-based
volatility estimators. The question whether the returns divided by their
standard deviations are normally distributed has important implica-
tions for many fields in finance. Normality of returns standardized by
their standard deviations holds promise for simple-to-implement and
yet precise models in financial risk management. Using volatility esti-
mated from high frequency data, Andersen, Bollerslev, Diebold, and
Labys (2000), Andersen, Bollerslev, Diebold, and Ebens (2001), Forsberg
and Bollerslev (2002) and Thomakos and Wang (2003) show that
standardized returns are indeed Gaussian. Contrary, returns scaled by
standard deviations estimated from GARCH type of models (which are
based on daily returns) are not Gaussian, they have heavy tails. This
well-known fact is the reason why heavy-tailed distributions (e.g. t-
distribution) were introduced into the GARCH models. We show
that when properly used, range-based volatility estimators are precise
enough to replicate basically the same results as those of Andersen et al.
(2001) obtained from high frequency data. To our best knowledge,
this has not been previously recognized in the daily data. Therefore
volatility models built upon high and low data might provide accuracy
similar to models based upon high frequency data and still keep the
benefits of themodels based on low frequency data (much smaller data
requirements and simplicity).

The rest of the paper is organized in the following way. In Section 2,
we describe existing range-based volatility estimators. In Section 3, we
analyze properties of range-based volatility estimators, mention some
caveats related to them and correct some mistakes in the existing
literature. In Section 4 we empirically study the distribution of returns
normalized by their standard deviations (estimated from range-based
volatility estimators) on 30 stock, the components of the Dow Jones
Industrial Average. Section 5 concludes.

2. Overview

Assume that price P follows a geometric Brownian motion such
that log-price p= ln(P) follows a Brownianmotion with zero drift and
diffusion σ.

dpt = σdBt ð1Þ

Diffusion parameter σ is assumed to be constant during one par-
ticular day, but can change fromoneday to another.We use one day as a
unit of time. This normalization means that the diffusion parameter in
(1) coincideswith the daily standard deviation of returns andwedo not
need to distinguish between these two quantities. Denote the price at
the beginning of the day (i.e. at the time t=0)O (open), the price in the
end of the day (i.e. at the time t=1) C (close), the highest price of

the day H, and the lowest price of the day L. Then we can calculate
open-to-close, open-to-high and open-to-low returns as

c = ln Cð Þ− ln Oð Þ ð2Þ

h = ln Hð Þ−ln Oð Þ ð3Þ

l = ln Lð Þ−ln Oð Þ ð4Þ

Daily return c is obviously a random variable drawn from a normal
distribution with zero mean and variance (volatility) σ2

c∼N 0;σ2
� �

ð5Þ

Our goal is to estimate (unobservable) volatility σ2 from observed
variables c, h and l. Since we know that c2 is an unbiased estimator of
σ2,

E c2
� �

= σ2 ð6Þ

we have the first volatility estimator (subscript s stands for “simple”)

σ2
s = c2 ð7Þ

Since this simple estimator is very noisy, it is desirable to have a
better one. It is intuitively clear that the difference between high and
low prices tells us much more about volatility than close price. High
and low prices provide additional information about volatility. The
distribution of the range d≡h− l (the difference between the highest
and the lowest value) of Brownian motion is known (Feller (1951)).
Define P(x) to be the probability that d≤x during the day. Then

P xð Þ = ∑
∞

n=1
−1ð Þn + 1n Erf c

n + 1ð Þxffiffiffiffiffiffiffi
2σ

p
� �

−2Erf c
nxffiffiffiffiffiffiffi
2σ

p
� �

+ Erf c
n−1ð Þxffiffiffiffiffiffiffi

2σ
p

� �� �

ð8Þ

where

Erf c xð Þ = 1−Erf xð Þ ð9Þ

and Erf(x) is the error function. Using this distribution Parkinson
(1980) calculates (for p≥1)

E dp
	 


=
4ffiffiffi
π

p Γ
p + 1

2

� �
1− 4

2p

� �
ζ p−1ð Þ 2σ2

� �
ð10Þ

where Γ(x) is the gamma function and ζ(x) is the Riemann zeta
function. Particularly for p=1

E dð Þ =
ffiffiffiffiffiffiffiffiffiffi
8πσ

p
ð11Þ

and for p=2

E d2
� �

= 4 ln 2ð Þσ2 ð12Þ

Based on formula (12), he proposes a new volatility estimator:

^
σ2
P =

h−lð Þ2
4 ln 2

ð13Þ

Garman and Klass (1980) realize that this estimator is based solely
on quantity h− l and therefore an estimator which utilizes all the
available information c, h and l will be necessarily more precise. Since
search for the minimum variance estimator based on c, h and l is an

21P. Molnár / International Review of Financial Analysis 23 (2012) 20–29
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infinite dimensional problem, they restrict this problem to analytica
estimators, i.e. estimators which can be expressed as an analytical
function of c, h and l. They find that the minimum variance analytical
estimator is given by the formula

^
σ2
GKprecise = 0:511 h−lð Þ2−0:019 c h + lð Þ−2hlð Þ−0:383c2 ð14Þ

The second term (cross-products) is very small and therefore they
recommend neglecting it and using more practical estimator:

^
σ2
GK = 0:5 h−lð Þ2− 2 ln2−1ð Þc2 ð15Þ

We follow their advice and further onwhenwe talk about Garman–
Klass volatility estimator (GK), we refer to Eq. (15). This estimator has
additional advantage over Eq. (14) – it can be simply explained as an
optimal (smallest variance) combination of simple and Parkinson
volatility estimator.

Meilijson (2009) derives another estimator, outside the class of
analytical estimators, which has even smaller variance than GK. This
estimator is constructed as follows.

^
σ2
M = 0:274σ2

1 + 0:16σ2
s + 0:365σ2

3 + 0:2σ2
4 ð16Þ

where

σ2
1 = 2 h′−c′

	 
2 + l′
h i

ð17Þ

σ2
3 = 2 h′−c′−l′

	 

c′ ð18Þ

σ2
4 = − h′−c′ð Þl′

2 ln 2−5 = 4
ð19Þ

where c′=c, h′=h, l′= l if cN0 and c′=−c, h′=− l, l′=−h if cb0.1

Rogers and Satchell (1991) derive an estimator which allows for
arbitrary drift.

^
σ2
RS = h h−cð Þ + l l−cð Þ ð20Þ

There are twoother estimatorswhichwe shouldmention. Kunitomo
(1992) derives a drift-independent estimator, which is more precise
than all the previously mentioned estimators. However “high” and
“low”prices used in his estimator are not the highest and lowest price of
the day. The “high” and “low” used in this estimator are the highest and
the lowest price relative to the trend line given by open and high prices.
These “high” and “low” prices are unknown unlesswe have tick-by-tick
data and therefore the use of this estimator is very limited.

Yang and Zhang (2000) derive another drift-independent estima-
tor. However, their estimator can be used only for estimation of
average volatility over multiple days and therefore we do not study it
in our paper.

Efficiency of a volatility estimator σ̂ 2 is defined as

Ef f
^
σ 2

� �
≡
var σ2

s

� �

var
^
σ 2

� � ð21Þ

Simple volatility estimator has by definition efficiency 1, Parkinson
volatility estimator has efficiency 4.9, Garman–Klass 7.4 andMeilijson
7.7. Rogers, Satchell has efficiency 6.0 for the zero drift and larger than
2 for any drift.

Remember that all of the studied estimators except for Rogers,
Satchell are derived under the assumption of zero drift. However, for
most of the financial assets, mean daily return is much smaller than
its standard deviation and can therefore be neglected. Obviously,
this is not true for longer time horizons (e.g. when we use yearly
data), but this is a very good approximation for daily data in basically
any practical application.

Further assumptions behind these estimators are continuous sam-
pling, no bid–ask spread and constant volatility. If prices are observed
only infrequently, then the observed high will be below the true high
and observed low will be above the true low, as was recognized
already by Garman and Klass (1980). Bid–ask spread has the opposite
effect: observed high price is likely to happen at ask, observed low
price is likely to happen at the low price and therefore the difference
between high and low contains in addition bid–ask spread. These
effects work in the opposite direction and therefore they will at least
partially cancel out. More importantly, for liquid stocks both these
effects are very small. In this paper we maintain the assumption of
constant volatility within the day. This approach is common even in
stochastic volatility literature (e.g. Alizadeh et al., 2002) and assessing
the effect of departing from this assumption is beyond the scope of
this paper. However, this is an interesting avenue for further research.

3. Properties of range-based volatility estimators

The previous section provided an overview of range-based volatility
estimators including their efficiency. Here we study their other
properties. Our main focus is not their empirical performance, as this
question has been studied before (e.g. Bali andWeinbaum (2005)). We
study the performance of these estimators when all the assumptions of
these estimators hold perfectly. This is more important than it seems to
be, because this allows us to distinguish between the case when these
estimators do notwork (assumptions behind themdo not hold) and the
case when these estimators work, but we are misinterpreting the
results. This point can be illustrated in the following example. Imagine
that we want to study the distribution of returns standardized by
their standard deviations. We estimate these standard deviations as a
square root of the Parkinson volatility estimator Eq. (13) and find that
standardized returns are not normally distributed. Should we conclude
that true standardized returnsarenot normally distributed or shouldwe
conclude that the Parkinson volatility estimator is not appropriate for
this purpose? We answer this and other related questions.

To do so, we ran 500,000 simulations, one simulation representing
one trading day. During every trading day log-price p follows a Brownian
motion with zero drift and daily diffusion σ=1. We approximate
continuous Brownian motion by n=100, 000 discrete intraday returns,
eachdrawn fromN 0;1=

ffiffiffi
n

p	 

.2We save high, lowandclose log-prices h,

l, c for every trading day.3

3.1. Bias in σ

All the previously mentioned estimators are unbiased estimators
of σ2. Therefore, square root of any of these estimators will be a biased
estimator of σ. This is direct consequence of well known fact that for a
random variable x the quantities E(x2) and E(x)2 are generally dif-

ferent. However, as I document later, using

ffiffiffiffiffiffî
σ2

q
as σ̂ , as an estimator

of σ, is not uncommon. Moreover, in many cases the objects of our

1 This estimator is not analytical, because it uses different formula for days when
cN0 than for days when cb0.

2 Such a high n allows us to have almost perfectly continuous Brownian motion and
having so many trading days allow us to know the distributions of range based
volatility estimators with very high precision. Simulating these data took one months
on an ordinary computer (Intel Core 2 Duo P8600 2.4 GHz, 2 GB RAM). Note that we do
not derive analytical formulas for the distributions of range-based volatility
estimators. Since these formulas would not bring additional insights into the questions
we study, their derivation is behind the scope of this paper.

3 Open log-price is normalized to zero.
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interests are standard deviations, not variances. Therefore, it is
important to understand the size of the error introduced by usingffiffiffiffiffiffî
σ2

q
instead of σ̂ and potentially correct for this bias. Size of this bias

depends on the particular estimator.
As can be easily proved, an unbiased estimator σ̂s of the standard

deviation σ based on

ffiffiffiffiffiffî
σ2
s

r
is

σ̂s =

ffiffiffiffiffiffî
σ2
s

r
×

ffiffiffi
π
2

r
= cj j ×

ffiffiffiffiffiffiffiffiffiffi
π = 2

p
ð22Þ

Using the results Eqs. (11) and (13) we can easily find that an
estimator of standard deviation based on range is

σ̂P =
h−l
2

×
ffiffiffi
π
2

r
=

ffiffiffiffiffiffî
σ2
P

r
×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
π ln 2

2

r
ð23Þ

Similarly, when we want to evaluate the bias introduced by usingffiffiffiffiffî
σ2

q
instead of σ̂ for the rest of volatility estimators, we want to find

constants cGK, cM and cRS such that

σ̂GK =

ffiffiffiffiffiffiffiffî
σ2
GK

r
× cGK ð24Þ

σ̂M =

ffiffiffiffiffiffiffî
σ2
M

r
× cM ð25Þ

σ̂RS =

ffiffiffiffiffiffiffî
σ2
RS

r
× cRS ð26Þ

From simulated high, low and close log-prices h, l, c we estimate
volatility according to Eqs. (7), (13), (15), (16), (20) and calculate
mean of the square root of these volatility estimates. We find that
cs=1.253, cP=1.043 (what is in accordance with theoretical valuesffiffiffiffiffiffiffiffiffiffi
π = 2

p
= 1:253 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πln2 = 2

p
= 1:043) and cGK=1.034, cM=1.033

and cRS=1.043. We see that the square root of the simple volatility
estimator is a severely biased estimator of standard deviation (bias is
25%), whereas bias in the square root of range-based volatility esti-
mators is rather small (3%–4%).

Even though it seems obvious that

ffiffiffiffiffî
σ2

q
is not an unbiased estimator

of σ, it is quite common even among researchers to use

ffiffiffiffiffî
σ2

q
as an

estimator of σ.I document this in two examples.
Bali and Weinbaum (2005) empirically compare range-based

volatility estimators. The criteria they use are: mean squared error

MSE σestimatedð Þ = E σestimated−σtrueð Þ2
h i

ð27Þ

mean absolute deviation

MAD σestimatedð Þ = E σestimated−σtruej j½ � ð28Þ

and proportional bias

Prop:Bias σestimatedð Þ = E σestimated−σtrueð Þ= σtrue½ � ð29Þ

For daily returns they find:

“The traditional estimator [Eq. (7) in our paper] is significantly
biased in all four data sets. […] it was found that squared returns do
not provide unbiased estimates of the ex post realized volatility. Of
particular interest, across the four data sets, extreme-value volatility
estimators are almost always significantly less biased than the
traditional estimator.”

This conclusion sounds surprising only until we realize that in their

calculations σestimated≡
ffiffiffiffiffî
σ2

q
, which, as just shown, is not an unbiased

estimator of σ. Actually, it is severely biased for a simple volatility
estimator. Generally, if our interest is unbiased estimate of the standard
deviation, we should use formulas (22)–(26).

A similar problem is in Bollen and Inder (2002). In testing for the

bias in the estimators of σ, they correctly adjust
ffiffiffiffiffî
σ2
s

q
using formula

(22), but they do not adjust

ffiffiffiffiffî
σ2
P

r
and

ffiffiffiffiffiffiffiffî
σ2
GK

r
by constants cP and cGK.

3.2. Distributional properties of range-based estimators

Daily volatility estimates are typically further used in volatility
models. Ease of the estimation of these models depends not only on the
efficiency of the used volatility estimator, but on its distributional
properties too (Broto and Ruiz (2004)). When the estimates of relevant
volatility measure (whether it is σ2, σ or lnσ2) have approximately
normal distribution, the volatility models can be estimated more

easily.4 We study the distributions of
^
σ2,

ffiffiffiffiffî
σ2

q
and lnσ̂2, because

these are the quantities modelled by volatility models. Most of the
GARCH models try to capture time evolution of σ2, EGARCH and
stochastic volatility models are based on time evolution of lnσ2 and
some GARCH models model time evolution of σ.

Under the assumption of Brownianmotion, the distribution of abso-
lute value of return and the distribution of range are known (Karatzas
and Shreve (1991), Feller (1951)). Using their result, Alizadeh et al.
(2002) derive the distribution of log absolute return and log range.

Distribution of
^
σ2,

ffiffiffiffiffiffiffî
σ2

q
and ln

^
σ2 is unknown for the rest of the range-

based volatility estimators. Therefore we study these distributions. To
do this, we use numerical evaluation of h, l and c data, which are
simulated according to the process Eq. (1).5

First we study the distribution of
^
σ2 for different estimators.

These distributions are plotted in Fig. 1. Since all these estimators are
unbiased estimators of σ2, all have the same mean (in our case one).
Variance of these estimators is given by their efficiency. From the in-
spection of Fig. 1, we can observe that the density function of

^
σ2 is

approximately lognormal for range-based estimators. On the other
hand, distribution of squared returns, which is χ2 distribution with
one degree of freedom, is very dispersed and reaches maximum at
zero. Therefore, for most of the purposes, distributional properties of
range-based estimators are more appropriate for further use than the
squared returns. For the range, this was already noted by Alizadeh et al.
(2002). However, this is true for all the range-based volatility esti-
mators. The differences in distributions among different range-based
estimators are actually rather small.

The distributions of
ffiffiffiffiffiffiffi
σ̂2

q
are plotted in Fig. 2. These distributions

have less weight on the tails than the distributions of σ̂2 . This is not
surprising, since the square root function transforms small values
(values smaller than one) into larger values (values closer towards
one) and it transforms large values (values larger than one) into

smaller values (values closer to one). Again, the distributions of

ffiffiffiffiffiffiffî
σ2

q
for range range-based estimators have better properties than the
distribution of the absolute returns. To distinguish the difference
between different range-based volatility estimators, we calculate the
summary statistics and present them in Table 1.

4 E.g. Gaussian quasi-maximum likelihood estimation, which plays an important
role in estimation of stochastic volatility models, depends crucially on the near-
normality of log-volatility.

5 The fact that we do not search for analytical formula is not limiting at all. The
analytical form of density function for the simplest range-based volatility estimator,
range itself, is so complicated (it is an infinite series) that in the end even skewness
and kurtosis must be calculated numerically.
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No matter whether we rank these distributions according to their
mean (which should be preferably close to 1) or according to their
standard deviations (which should be the smallest possible), ranking
is the same as in the previous case: the best is Meilijson volatility
estimator, then Garman–Klass, next Roger–Satchell, next Parkinson
and the last is the absolute returns.

Inmany practical applications, themean squared error (MSE) of an
estimator θ̂

MSE θ̂
� �

= E θ̂−θ
� �2

� �
ð30Þ

is the most important criterion for the evaluation of the estimators,
since MSE quantifies the difference between values implied by an
estimator and the true values of the quantity being estimated. The

MSE is equal to the sum of the variance and the squared bias of the
estimator

MSE θ̂
� �

= Var θ̂
� �

+ Bias θ̂; θ
� �� �2 ð31Þ

and therefore in our case (when estimator with smallest variance has
smallest bias) is the ranking according to MSE identical with the
ranking according to bias or variance.

In the end, we investigate the distribution of ln
^
σ2 (see Fig. 3). As we

can see, the logarithm of the squared returns is highly nonnormally
distributed, but the logarithms of the range-based volatility estimators
have distributions similar to the normal distribution. To see the dif-
ference among various range-based estimators, we again calculate their
summary statistics (see Table 2).

Note that the true volatility is normalized to one. Normality of the
estimator is desirable for practical reasons and therefore the ideal
estimator should have mean and skewness equal to zero, kurtosis
close to three and standard deviation as small as possible. We see that
from the five studied estimators the Garman–Klass and Meilijson
volatility estimators, in addition to being most efficient, have best
distributional properties.

Table 1
The summary statistics for the square root of the volatility estimated as absolute returns
and as a square root of the Parkinson, Garman–Klass, Meilijson and Rogers–Satchell
formulas.

Mean Std Skewness Kurtosis

|r| 0.80 0.60 1.00 3.87ffiffiffiffiffî
σ2
P

r
0.96 0.29 0.97 4.24

ffiffiffiffiffiffiffiffî
σ2
GK

r
0.97 0.24 0.60 3.40

ffiffiffiffiffiffiffî
σ2
M

r
0.97 0.24 0.54 3.28

ffiffiffiffiffiffiffî
σ2
RS

r
0.96 0.28 0.46 3.44
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Fig. 3. Distribution of the logarithm of volatility estimated as squared returns and from
the Parkinson, Garman–Klass, Meilijson and Rogers–Satchell formulas.
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Fig. 1. Distribution of variances estimated as squared returns and from Parkinson,
Garman–Klass, Meilijson and Rogers–Satchell formulas.
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Fig. 2. Distribution of square root of volatility estimated as squared returns and from
Parkinson, Garman–Klass, Meilijson and Rogers–Satchell formulas.
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3.3. Normality of normalized returns

As was empirically shown by Andersen et al. (2000), Andersen et al.
(2001), Forsberg andBollerslev (2002) andThomakos andWang (2003)
on different data sets, standardized returns (returns divided by their
standard deviations) are approximately normally distributed. In other
words, daily returns can be written as

ri = σizi ð32Þ

where zi∼N(0, 1). This finding has important practical implications too.
If returns (conditional on the true volatility) are indeed Gaussian and
heavy tails in their distributions are caused simply by changing
volatility, then what we need the most is a thorough understanding of
the time evolution of volatility, possibly including the factors which
influence it. Even though the volatility models are used primarily to
capture time evolution of volatility, we can expect that the better our
volatility models, the less heavy-tailed distribution will be needed for
modelling of the stock returns. This insight can contribute to improved
understanding of volatility models, which is in turn crucial for risk
management, derivative pricing, portfolio management etc.

Intuitively, normality of the standardized returns follows from the
Central Limit Theorem: since daily returns are just a sum of high-
frequency returns, daily returns will be drawn from normal distribution.6

Since both this intuition and the empirical evidence of the normality
of returns standardized by their standard deviations is convincing, it is
appealing to require that one of the properties of a “good” volatility
estimator should be that returns standardized by standard deviations
obtained fromthis estimatorwill benormallydistributed (see e.g. Bollen
and Inder (2002)). However, this intuition is not correct. As I now
show, returns standardized by some estimate of the true volatility do
not need to, and generally will not, have the same properties as returns
standardized by the true volatility. Therefore we need to understand
whether the range-based volatility estimators are suitable for standard-
ization of the returns. There are two problems associated with these
volatility estimators: they are noisy and their estimates might be (and
typically are) correlated with returns. These two problemsmight cause
returns standardized by the estimated standard deviations not to be
normal, even when the returns standardized by their true standard
deviations are normally distributed.

3.3.1. Noise in volatility estimators
We want to know the effect of noise in volatility estimates σ̂i on

the distribution of returns normalized by these estimates (ẑi = ri = σ̂i)
when true normalized returns zi=ri/σi are normally distributed.
Without loss of generality, we set σi=1 and generate one million
observations of ri, i∈{1,…, 1, 000, 000}, all of them are iid N(0,1). Next
we generate σ̂i;n in such a way that σ̂ is unbiased estimator of σ, i.e.

E σ̂i;n

� �
= 1 and n represents the level of noise in σ̂i;n. There is no

noise for n=0 and therefore σ̂i;0 = σi = 1. To generate σ̂i;n for iN0

we must decide upon distribution of σ̂i;n. Since we know from the
previous section that range-based volatility estimates are approxi-
mately lognormally distributed, we draw estimates of the standard
deviations from lognormal distributions. We set the parameters μ and

s2 of lognormal distribution in such a way that E σ̂i;n

� �
= 1 and Var

σ̂i;n

� �
= n, particularly μ = −1

2
ln 1 + nð Þ, s2= ln(1+n). For every

n, we generate one million observations of σ̂i;n. Next we calculate
normalized returns ẑi;n = ri = σ̂i;n. Their summary statistics is in the
Table 3.

Obviously, ẑi;0, which is by definition equal to ri, has zero mean,
standard deviation equal to 1, skewness equal to 0 and kurtosis equal
to 3. We see that normalization by σ̂ , a noisy estimate of σ, does not
change E ẑ

� �
and skewness of ẑ. This is natural, because ri is dis-

tributed symmetrically around zero. On the other hand, adding noise
increases standard deviation and kurtosis of ẑ. When we divide
normally distributed random variable ri by random variable σ̂i, we are
effectively adding noise to ri, making its distribution flatter and more
dispersed with more extreme observations. Therefore, standard
deviation increases. Since kurtosis is influenced mostly by extreme
observations, it increases too.

3.3.2. Bias introduced by normalization of range-based volatility estimators
Previous analysis suggests that the more noisy volatility estimator

we use for the normalization of the returns, the higher the kurtosis
of the normalized returns will be. Therefore we could expect to find
the highest kurtosis when using the Parkinson volatility estimator
Eq. (13). As we will see later, this is not the case. Returns and esti-
mated standard deviations were independent in the previous section,
but this is not the case when we use range-based estimators.

Let us denote σPARK≡
ffiffiffiffiffiffiffiffiffiffiffi
σ̂2
PARK

r
, σGK≡

ffiffiffiffiffiffiffî
σ2
RS

r
, σM≡

ffiffiffiffiffiffiffî
σ2
M

r
and σRS;t≡

ffiffiffiffiffiffiffi
σ̂2
RS

r
.

We study the distributions of ẑPARK;i ≡ ri = σPARK;i, ẑGK;i ≡ ri = σGK;i,

ẑM;i ≡ ri = σM;i, ẑRS;t ≡ ri = σRS;i. Histograms for these distributions are

shown in Fig. 4 and corresponding summary statistics are in Table 4.
The true mean and skewness of these distributions are zero,

because returns are symmetrically distributed around zero, triplets
(h, l, c) and (− l, −h, −c) are equally likely and all the studied
estimators are symmetric in the sense that they produce the same
estimates for the log price following the Brownian motion B(t) and
for the log price following Brownian motion −B(t), particularly
σ̂PARK h; l; cð Þ = σ̂PARK −l;−h; cð Þ, σ̂GK h; l; cð Þ = σ̂GK −l;−h; cð Þ, σ̂M h; l; cð Þ =
σ̂M −l;−h; cð Þ and σ̂RD h; l; cð Þ = σ̂RS −l;−h; cð Þ:

However, it seems from Table 4 that distribution of ẑRS;i is skewed.
There is another surprising fact about ẑRS;i. It has very heavy tails. The
reason for this is that the formula (20) is derived without the assump-
tion of zero drift. Therefore, when stock price performs one-waymove-
ment, this is attributed to the drift term and volatility is estimated to
be zero. (If movement is mostly in one direction, estimated volatility
will be nonzero, but very small). Moreover, this is exactly the situation
when stock returns are unusually high. Dividing the largest returns by
the smallest estimated standard deviations causes a lot of extreme
observations and therefore very heavy tails. Due to these extreme

Table 2
Summary statistics for logarithm of volatility estimated as a logarithm of squared
returns and as a logarithm of Parkinson, Garman–Klass, Meilijson and Rogers–Satchell
volatility estimators.

Mean Std Skewness Kurtosis

ln(r2) −1.27 2.22 −1.53 6.98

ln
^σ2
P

� �
−0.17 0.57 0.17 2.77

ln
^σ2
GK

� �
−0.13 0.51 −0.09 2.86

ln
^σ2
M

� �
−0.13 0.50 −0.14 2.86

ln σ̂2
RS

� �
−0.17 0.61 −0.71 5.41

6 given the limited time-dependence and some conditions on existence of moments.

Table 3
Summary statistics for a random variable obtained as ratio of normal random variable
with zero mean and variance one and lognormal random variable with constant mean
equal to one and variance increasing from 0 to 0.8.

n = Var σ̂i

� �
Mean ẑi;n

� �
Std ẑi;n

� �
Skewness ẑi;n

� �
Kurtosis ẑi;n

� �

0.0 0.0001 1.00 0.00 3.00
0.2 0.0003 1.32 0.02 6.22
0.4 0.0013 1.66 −0.01 11.80
0.6 −0.0007 2.03 0.03 19.76
0.8 0.0025 2.43 0.01 34.60
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observations the skewness of the simulated sample is different from the
skewness of the population, which is zero. This illustrates that the
generality (drift independence) of the Rogers and Satchell (1991)
volatility estimator actually works against this estimator in cases
when the drift is zero.

When we use the Parkinson volatility estimator for the standard-
ization of the stock returns, we get exactly the opposite result.
Kurtosis is now much smaller than for the normal distribution. This is
in line with empirical finding of Bollen and Inder (2002). However,
this result should not be interpreted that this estimator is not
working properly. Remember that we got the result of the kurtosis
being significantly smaller than 3 under ideal conditions, when the
Parkinson estimator works perfectly (in the sense that it works
exactly as it is supposed to work). Remember that this estimator is
based on the range. Even though the range, which is based on high
and low prices, seems to be independent of return, which is based on
the open and close prices, the opposite is the case. Always when
return is high, range will be relatively high too, because range is
always at least as large as absolute value of the return. |r|/σPARK will
never be larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p
, because

rj j
σPARK

=
rj j

h−lffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p rj j
h−l

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p
ð33Þ

The correlation between |r| and σPARK is 0.79, what supports our
argument. Another problem is that the distribution of ẑP;i is bimodal.

As we can see from the histogram, distribution of ẑM;i does not
have any tails either. This is because the Meilijson volatility estimator
suffers from the same type of problem as the Parkinson volatility
estimator, just to a much smaller extent.

The Garman–Klass volatility estimator combines the Parkinson
volatility estimator with simple squared return. Even though both, the

Parkinson estimator and squared return are highly correlated with
size of the return, the overall effect partially cancels out, because
these two quantities are subtracted. Correlation between |r| and σGK is
indeed only 0.36. ẑGK;i has approximately normal distribution, as the
effect of noise and the effect of correlation with returns to large extent
cancels out.

We conclude this subsection with the appeal that we should be
aware of the assumptions behind the formulas we use. As range-based
volatility estimators were derived to be as precise volatility estimators
as possible, they work well for this purpose. However, there is no
reason why all of these estimators should work properly when used
for the standardization of the returns. We conclude that from the
studied estimators the only estimator appropriate for standardization
of returns is the Garman–Klass volatility estimator. We use this esti-
mator later in the empirical part.

3.4. Jump component

So far in this paper, returns and volatilities were related to the
trading day, i.e. the period from the open to the close of the market.
However, most of the assets are not traded continuously for 24 h a
day. Therefore, opening price is not necessarily equal to the closing
price from the previous day. We are interested in daily returns

ri = ln Cið Þ− ln Ci−1ð Þ ð34Þ

simply because for the purposes of riskmanagement we need to know
the total risk over the whole day, not just the risk of the trading part of
the day. If we do not adjust range-based estimators for the presence of
opening jumps, theywill of course underestimate the true volatility. The
Parkinson volatility estimator adjusted for the presence of opening
jumps is

^
σ2
P =

h−lð Þ2
4 ln 2

+ j2 ð35Þ

where ji= ln(Oi)− ln(Ci−1) is the opening jump. The jump-adjusted
Garman–Klass volatility estimator is:

^
σ2
GK = 0:5 h−lð Þ2− 2 ln 2−1ð Þc2 + j2 ð36Þ

Other estimators should be adjusted in the same way. Unfortu-
nately, including opening jumpwill increase variance of the estimator
when opening jumps are significant part of daily returns.7 However,
this is the only way how to get unbiased estimator without imposing
some additional assumptions. If we knew what part of the overall
daily volatility opening jumps account for, we could find optimal
weights for the jump volatility component and for the volatility
within the trading day to minimize the overall variance of the com-
posite estimator. This is done in Hansen and Lunde (2005), who study
how to combine opening jump and realized volatility estimated from
high frequency data into the most efficient estimator of the whole day
volatility. However, the relation of opening jump and the trading day
volatility can be obtained only from data. Moreover, there is no
obvious reason why the relationship from the past should hold in the
future. Simply adding jump component makes range-based estima-
tors unbiased without imposing any additional assumption.8

Adjustment for an opening jump is not as obvious as it seems to be
and even researchers quite often make mistakes when dealing with
this issue. Themost commonmistake is that the range-based volatility
estimators are not adjusted for the presence of opening jumps at all
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Fig. 4. Distribution of normalized returns. “true” is the distribution of the stock returns
normalized by the true standard deviations. This distribution is by assumption N(0,1).
PARK, GK, M and RS refer to distributions of the same returns after normalization by
volatility estimated using the Parkinson, Garman–Klass, Meilijson and Rogers–Sanchell
volatility estimators.

Table 4
Summary statistics for returns nomalized by different volatility estimates:
ẑPARK;i ≡ ri = σPARK;i , ẑGK;i ≡ ri = σGK;i , ẑM;i ≡ ri = σM;i , ẑRS;t ≡ ri = σRS;i .

Mean Std Skewness Kurtosis

ztrue, i 0.00 1.00 0.00 3.00
ẑP;i 0.00 0.88 −0.00 1.79
ẑGK;i 0.00 1.01 0.00 2.61
ẑM;i 0.00 1.02 0.00 2.36
ẑRS;i 0.01 1.35 1.62 123.96

7 Jump volatility is estimated with smaller precision than volatility within trading
day.

8 These assumptions could be based on past data, but they would still be just
assumptions.
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(see e.g. Parkinson volatility estimator in Bollen and Inder (2002)). A
less common mistake, but with worse consequences is an incorrect
adjustment for the opening jumps. E.g. Bollen and Inder (2002) and
Fiess and MacDonald (2002) refer to the following formula

σ2
GKwrong;i = 0:5 ln Hi− ln Lið Þ2− 2 ln 2−1ð Þ ln Ci− ln Ci−1ð Þ2 ð37Þ

as Garman–Klass formula. This “Garman–Klass volatility estimator”
will on average be even smaller than a Garman–Klass estimator not
adjusted for jumps. Moreover, it sometimes produces negative
estimates for volatility (variance σ2).

4. Normalized returns –empirics

Andersen et al. (2001) find that although the unconditional daily
return distributions are leptokurtic, the daily returns normalized by
the realized standard deviations are close to normal. Their conclusion
is based on standard deviations obtained these from high frequency
data. We study whether (and to what extend) this result is obtainable
when standard deviations are estimated from daily data only.

We study stocks which were the components of the Dow Jow
Industrial Average on January 1, 2009, namely AA, AXP, BA, BAC, C,
CAT, CVX, DD, DIS, GE, GM, HD, HPQ, IBM, INTC, JNJ, JPM, CAG,9 KO,
MCD, MMM, MRK, SFT, PFE, PG, T, UTX, VZ and WMT. We use daily
open, high, low and close prices. The data covers years 1992 to 2008.
Stock prices are adjusted for stock splits and similar events. We have
4171 daily observations for every stock. These data were obtained
from the CRSP database.We study DJI components tomake our results
as highly comparable as possible with the results of Andersen et al.
(2001).

For brevity, we study only two estimators: the Garman–Klass
estimator Eq. (15) and the Parkinson estimator Eq. (13). We use the
Garman–Klass volatility estimator because our previous analysis
shows that it is the most appropriate one. We use the Parkinson
volatility estimator to demonstrate that even though this estimator is
themost commonly used range-based estimator, it should not be used
for normalization of returns. Moreover, we study the effect of
including or excluding a jump component into range-based volatility
estimators.

First of all, we need to distinguish the daily returns and the trading
day returns. By the daily returns we mean close-to-close returns,
calculated according to formula (34). By the trading day returns we
mean returns during the trading hours, i.e. open-to-close returns,
calculated according to formula (2). We estimate volatilities accord-
ingly: volatility of the trading day returns from Eqs. (13) to (15) and
the volatility of the daily returns using Eqs. (35) and (36). Next we
calculate standardized returns. We calculate standardized returns in
three different ways: trading day returns standardized by trading day
standard deviations (square root of trading day volatility), daily
returns standardized by daily standard deviation and daily returns
standardized by trading day standard deviation. Why do we
investigate daily returns standardized by trading day standard
deviations too? Theoretically, this does not make much sense because
the return and the standard deviations are related to different time
intervals. However, it is still quite common (see e.g. Andersen et al.
(2001)), because people are typically interested in daily returns, but
the daily volatility cannot be estimated as precisely as trading day
volatility. The volatility of the trading part of the day can be estimated
very precisely from the high frequency data, whereas estimation of
the daily volatility is always less precise because of the necessity of
including the opening jump component. Therefore, trading day
volatility is commonly used as a proxy for daily volatility. This

approximation is satisfactory as long as the opening jump is small in
comparison to trading day volatility, which is typically the case.

Nowwe calculate summary statistics for the different standardized
returns as well as returns themselves. Results for the standard devia-
tions are presented in Table 5 and results for the kurtosis are pre-
sented in Table 6. We do not put similar tables for mean and kurtosis
into this paper, because these results are less interesting and can be
summarized in one sentence: Mean returns are always very close to
zero, independent of which standardization we used. Skewness is
always very close to zero too.

The results for standard deviations and kurtosis are generally in line
with the predictions from our simulations too. First let us discuss the
standard deviations of the standardized returns. As Table 5 documents,
normalization by standard deviations obtained from the Parkinson
volatility estimator results in standard deviation smaller than one,
approximately around0.9whereas normalization by standard deviation
obtained from the Garman–Klass volatility estimator results in standard
deviations larger than one, around 1.05. Normalization by standard
deviations estimated from GARCH model is approximately 1.1. This is
expected aswell, because division by a noisy random variable increases
the standard deviation.

Results for the kurtosis of standardized returns (see Table 6) are in
line with the predictions from our simulations too. Return distribu-
tions have heavy tails (kurtosis significantly larger than 3). Second, the
daily returns normalized by the standard deviations calculated from
Garman–Klass formula are close to normal (kurtosis is close to 3). Third,
the daily returns normalized by the standard deviations calculated
from Parkinson formula have no tails (kurtosis is significantly smaller

9 Since historical data for KFT (component of DJI) are not available for the complete
period, we use its biggest competitor CAG instead.

Table 5
Standarddeviations of the stock returns. rtd is an open-to-close return, rd is a close-to-close
return. σ̂GK;td ( σ̂P;td) is square root of Garman–Klass (Parkinson) volatility estimate
without opening jump component. σ̂GK;d ( σ̂P;d) is square root of Garman–Klass
(Parkinson) volatility estimate including opening jump component. σ̂garch is standard
deviation estimated from GARCH(1,1) model based on daily returns.

Trading day returns Daily returns

rtd rtd

σ̂GK;td

rtd

σ̂P;td

rd rd

σ̂GK;d

rd
σ̂P;d

rd
σ̂GK;td

rd
σ̂P;td

rd
σ̂ garch

AA 0.02 1.14 0.94 0.02 1.11 0.96 1.00 1.28 1.12
AXP 0.02 1.11 0.92 0.02 1.07 0.94 1.00 1.26 1.11
BA 0.02 1.04 0.89 0.02 1.02 0.92 1.00 1.20 1.10
BAC 0.02 1.12 0.93 0.02 1.08 0.94 1.00 1.26 1.12
C 0.02 1.11 0.91 0.03 1.05 0.92 1.01 1.26 1.12
CAT 0.02 1.10 0.92 0.02 1.08 0.95 1.00 1.28 1.13
CVX 0.01 1.11 0.92 0.02 1.08 0.95 1.00 1.25 1.09
DD 0.02 1.07 0.90 0.02 1.02 0.91 1.00 1.18 1.06
DIS 0.02 1.03 0.88 0.02 0.99 0.90 1.00 1.18 1.09
GE 0.02 1.07 0.91 0.02 1.03 0.93 1.00 1.20 1.09
GM 0.02 1.10 0.92 0.03 1.08 0.95 1.00 1.27 1.13
HD 0.02 1.06 0.90 0.02 1.02 0.92 1.00 1.20 1.10
HPQ 0.02 1.08 0.91 0.03 1.04 0.92 1.00 1.23 1.11
IBM 0.02 1.07 0.91 0.02 1.04 0.93 1.00 1.25 1.13
INTC 0.02 1.08 0.92 0.03 1.06 0.95 1.00 1.31 1.19
JNJ 0.01 1.06 0.89 0.02 1.00 0.90 1.00 1.17 1.06
JPM 0.02 1.06 0.90 0.02 1.03 0.92 1.00 1.22 1.10
CAG 0.01 1.09 0.89 0.02 0.98 0.87 1.00 1.15 1.01
KO 0.01 1.03 0.88 0.02 0.99 0.89 1.00 1.15 1.04
MCD 0.02 1.04 0.89 0.02 0.99 0.89 1.00 1.15 1.05
MMM 0.01 1.05 0.89 0.02 1.02 0.90 1.00 1.16 1.04
MRK 0.02 1.05 0.89 0.02 1.01 0.91 1.00 1.20 1.09
MSFT 0.02 1.04 0.90 0.02 1.03 0.93 1.00 1.24 1.14
PFE 0.02 1.08 0.91 0.02 1.04 0.92 1.00 1.22 1.10
PG 0.01 1.07 0.90 0.02 1.01 0.90 1.00 1.17 1.05
T 0.02 1.09 0.91 0.02 1.05 0.92 1.00 1.20 1.06
UTX 0.02 1.08 0.91 0.02 1.05 0.93 1.00 1.22 1.09
VZ 0.02 1.08 0.91 0.02 1.04 0.92 1.00 1.21 1.08
WMT 0.02 1.04 0.88 0.02 1.01 0.90 1.00 1.20 1.08
XOM 0.01 1.08 0.91 0.02 1.06 0.94 1.00 1.22 1.08

Mean 0.02 1.07 0.90 0.02 1.04 0.92 1.00 1.22 1.09
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than 3). Fourth, normalization of daily returns by standard deviation
estimated for tradingday only,will cause upward bias in kurtosis. This is
a consequence of the standardization by an incorrect standard deviation
– sometimes (particularly in a situation when the opening jump is
large), returns are divided by too small standard deviation, which will
cause too many large observations for normalized returns.

The last column of Table 6 reports kurtosis of returns normalized
by standard deviations estimated fromGARCH (1,1) model withmean
return fixed to zero. As we can see, these normalized returns are not
Gaussian, they have fat tails. This is consistent with the fact that
GARCH models with fat-tailed conditional distribution of returns fit
data better than GARCH models with conditionally normally distrib-
uted returns. However, as is clear from this paper, this is the case
simply because GARCH models always condition return distribution
on the estimated volatility, which is only a noisy proxy of the true
volatility. Therefore, even when distribution of returns conditional on
the true volatility is Gaussian, distribution of returns conditional on
estimated volatility will have heavy tails. This result has an important
implication for volatility modelling: the more precisely we can
estimate the volatility, the closer will be the conditional distribution
of returns to the normal distribution.

5. Conclusion

Range-based volatility estimators provide significant increase in
accuracy compared to simple squared returns. Even though efficiency
of these estimators is known, there is some confusion about other
properties of these estimators. We study these properties. Our main

focus is the properties of returns standardized by their standard
deviations.

First, we correct some mistakes in existing literature. Second, we
study different properties of range-based volatility estimators and
find that for most purposes, the best volatility estimators is the
Garman–Klass volatility estimator. The Meilijson volatility estimator
improves its efficiency slightly, but it is based on a significantly more
complicated formula. However, performance of all the range-based
volatility estimators is similar in most cases except for the case when
we want to use them for standardization of the returns.

Returns standardized by their standard deviations are known to be
normally distributed. This fact is important for the volatility
modelling. This result was possible to obtain only when the standard
deviations were estimated from the high frequency data. When the
standard deviations were obtained from volatility models based on
daily data, returns standardized by these standard deviations are not
Gaussian anymore, they have heavy tails. Using simulations we show
that even when returns themselves are normally distributed, returns
standardized by (imprecisely) estimated volatility are not normally
distributed; their distribution has heavy tails. In other words: the fact
that standard volatility models show that even conditional distribu-
tion of returns has heavy tails does not mean that returns are not
normally distributed. It means that these models cannot estimate
volatility precisely enough and the noise in the volatility estimates
causes the heavy tails.

It is not obvious whether range-based volatility estimators can be
used for the standardization of the returns. Using simulations we find
that for the purpose of returns standardization there are large dif-
ferences between these estimators and we find that the Garman–
Klass volatility estimator is the only one appropriate for this purpose.
Putting all the results together, we rate the Garman–Klass volatility
estimator as the best volatility estimator based on daily (open, high,
low and close) data. We test this estimator empirically and we find
that we can indeed obtain basically the same results from daily data as
Andersen et al. (2001) obtained from high-frequency (transaction)
data. This is important, because the high-frequency data are very
often not available or available only for a shorter time period and their
processing is complicated. Since returns scaled by standard deviations
estimated from GARCH type of models (based on daily returns) are
not Gaussian (they have fat tails), our results show that the GARCH
type of models cannot capture the volatility precisely enough.
Therefore, in the absence of high-frequency data, further develop-
ment of volatility models based on open, high, low and close prices is
recommended.
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ABSTRACT
We suggest a simple and general way to improve the GARCH volatility models using the intraday
range between the highest and the lowest price to proxy volatility. We illustrate the method by
modifying a GARCH(1,1) model to a range-GARCH(1,1) model. Our empirical analysis conducted
on stocks, stock indices and simulated data shows that the range-GARCH(1,1) model performs
significantly better than the standard GARCH(1,1) model both in terms of in-sample fit and out-
of-sample forecasting ability.
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I. Introduction

Changes of asset prices (returns) and their variances
belong to the fundamental variables in finance. Even
though returns of most financial assets are to a large
extent unpredictable, their variances display high
temporal dependency and are predictable. Starting
with the work of Engle (1982) and Bollerslev (1986),
the ARCH and GARCH classes of models have
become standard tools to for volatility modelling
and forecasting, see Andersen et al. (2006).

In GARCH type of models, demeaned1 squared
returns serve as a way to calculate innovations to
the volatility. Rewriting the GARCH(1,1) model in
terms of observed variables (returns) only shows
that the GARCH(1,1) model in fact calculates volati-
lity as a weighted moving average of past squared
returns. If volatility is changing gradually over time,
the GARCH model will work simply because squared
returns are daily volatility estimates, and therefore the
GARCH model essentially calculates volatility as a
weighted moving average of the past volatilities.

This intuition has interesting implications. Most
importantly, replacing the squared returns by more
precise volatility estimates will produce better GARCH
models, regarding both in-sample fit and out-of-sample
forecasting performance. In addition, coefficients of

GARCH models based on volatility estimates more
precise than squared returns will be changed in such a
way that they will put more weight on more recent
observations. We examine both these implications.

To test our idea, we estimate a GARCH(1,1) model
using both squared returns and a more precise vola-
tility proxy, in particular the Parkinson (1980) volati-
lity estimator based on range (the difference between
high and low). The results confirm our expectations.

Our work is related to other range-based volatility
models, namely Alizadeh, Brandt, and Diebold
(2002), Chou (2005) and Brandt and Jones (2006)
and more recently Miralles-Marcelo, Miralles-
Quirós, and Miralles-Quirós (2013). However, stan-
dard GARCH models are estimated to fit the condi-
tional distribution of returns, whereas the previously
mentioned models are estimated to fit the condi-
tional distribution of range (log range). This means
that only our model can be estimated directly in
standard econometric software without any pro-
gramming. For a review of range-based volatility
models, see Chou, Chou, and Liu (2015). Range-
based volatility estimators are compared in Molnár
(2012) and some of the recent applications of range
are Awartani and Maghyereh (2013), Lucey, Larkin,
and O’Connor (2014) and Lyócsa (2014).

CONTACT Peter Molnár peto.molnar@gmail.com Department of Industrial economics and Technology Management, Norwegian University of
Science and Technology (NTNU), NO-7491 Trondheim, Norway
1For most of the assets, mean daily return is much smaller than its standard deviation and therefore can be considered equal to zero. In this article, we
assume that it is indeed zero. This assumption not only makes further analysis simpler, but it actually helps to estimate volatility more precisely. In the
words of Poon and Granger (2003): ‘The statistical properties of sample mean make it a very inaccurate estimate of the true mean, especially for small
samples, taking deviations around zero instead of the sample mean typically increases volatility forecast accuracy’.
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Our contribution is threefold. First, we construct a
range-based GARCH model (RGARCH). This model
is a simple modification of the standard widely used
GARCH(1,1) model, but still outperforms it signifi-
cantly. Second, our article should be viewed as an
illustration of how the existing GARCH models can
be easily improved by using more precise volatility
proxies. Even though this article devotes most of the
space to compare the RGARCH(1,1) model with the
standard GARCH(1,1) model, our main goal is not to
convince the reader that our model is the best one. On
the contrary, since leverage effect is a well-documented
phenomenon, an asymmetric RGARCH model is very
likely to outperform the RGARCH(1,1). However, we
focus on the GARCH(1,1) model, as it is arguably the
most fundamental volatility model and the incorpora-
tion of the range into this model illustrates the general
idea well. Third, we confirm that GARCH models
should indeed be considered just filtering devices, not
models for data generating processes.

The rest of the article is organized in the fol-
lowing way: Section II provides a basic introduc-
tion to volatility modelling and an overview of
existing range-based volatility estimators. Section
III describes the data, methodology and results.
Finally, Section IV concludes.

II. Theoretical background

GARCH models

Let Pt be the price of a speculative asset at the end of
day t. Define return rt as

rt ¼ logðPtÞ � logðPt�1Þ: (1)

Daily returns are known to be basically unpredict-
able and their expected value is very close to zero.
On the other hand, variance of daily returns changes
significantly over time. We assume that daily returns
are drawn from a normal distribution with a zero
mean and time-varying variance:

rt , Nð0; σ2t Þ: (2)

Both the zero mean and normal distribution assump-
tions are not necessary and can be abandoned with-
out any difficulty. For the sake of exposition, we
maintain these assumptions throughout the article.

This allows us to focus on modelling of conditional
variance (volatility) only. The first model to capture
the time variation of volatility is Engle’s (1982) auto-
regressive conditional Heteroscedasticity (ARCH)
model. The ARCH(p) has the form

σ2t ¼ ωþ
Xp
i¼1

αir
2
t�i; (3)

where rt is a return in day t, σ2t is an estimate of the
volatility in day t and ω and αi0s are positive con-
stants. The generalized ARCH model was afterwards
introduced by Bollerslev (1986). The GARCH(p,q)
has the following form:

σ2t ¼ ωþ
Xp
i¼1

αir
2
t�i þ

Xq
j¼1

βjσ
2
t�j; (4)

where βi
0s are positive constants. The GARCH

model has become more popular, because with just
a few parameters it can fit data better than a more
parametrized ARCH model. Particularly popular is
its simplest version, the GARCH(1,1) model2:

σ2t ¼ ωþ αr2t�1 þ βσ2t�1: (5)

Estimation of the GARCH(1,1) typically yields
the following results. Parameter ω is very small
(e.g. 0.0006), αþ β is close to 1, but smaller than
1. Moreover, most of the weight is on the β
coefficient, e.g. α ¼ 0:04; β ¼ 0:95. In other
words, the estimated GARCH(1,1) model is
usually very close to its reduced form, the expo-
nential weighted moving average (EMWA) model

σ2t ¼ αr2t�1 þ ð1� αÞ σ2t�1: (6)

The EMWA model is useful particularly for didactic
purposes. In this model, the new volatility estimate is
estimated as a weighted average of the most recently
observed volatility proxy (squared returns) and the last
estimate of the volatility. Loosely speaking, we gradu-
ally update our belief about the volatility as new infor-
mation (noisy volatility proxy) becomes available. If
the new information indicates that the volatility was
larger than our previous belief about it, we update our
belief upwards and vice versa. The coefficient α tells us
how much weight we put on the new information. If
we use a less noisy volatility proxy instead of squared

2Even though the GARCH(1,1) is a very simple model, it still works surprisingly well in comparison with much more complex volatility models (Hansen and
Lunde 2005).
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returns, the optimal α should be larger and the perfor-
mance of the model should be better.

The same intuition applies to GARCH models
too. This naturally leads to the proposal of the mod-
ified GARCH(1,1)

σ2t ¼ ωþ ασd2proxy;t�1 þ βσ2t�1 (7)

where σd2proxy;t�1 is the less noisy volatility proxy.
Next we need to decide upon what should be used

as a better (less noisy) volatility proxy. Generally, the
better the proxy we use, the better should the model
work. Therefore, the natural candidate would be rea-
lized volatility. This would lead to models related to
Shephard, and Sheppard (2010) and Hansen, Huang,
and Shek (2012). However, despite the attractiveness
of the realized variance we do not use it as a volatility
proxy. Realized variance must be calculated from high
frequency data and these data are in many cases not
available at all or available only over shorter time
horizons and costly to obtain and work with.
Moreover, due to market microstructure effects the
estimation of volatility from high frequency data is a
rather complex issue (see Dacorogna et al. 2001).
Contrary to high frequency data, high (H) and low
(L) prices, which are usually widely available, can be
used to estimate volatility (Parkinson 1980):

bσ2P ¼ ½ln ðH=LÞ�2
4 ln 2

: (8)

This estimator is derived under the assumption that,
during the day, the logarithm of the price follows a
Brownian motion with a zero drift. Even though this
is not always true, Parkinson’s volatility estimator
performs very well with the real world data (Chou,
Chou, and Liu 2010).

An alternative volatility proxy we could use is the
Garman and Klass (1980) volatility estimator, which
utilizes additional open (O) and close (C) data:

dσ2GK ¼ 0:5 ½ln ðH=LÞ�2 � ð2 ln 2� 1Þ ½lnðC=OÞ�2:
(9)

Under ideal conditions (Brownian motion with zero
drift), this estimator is less noisy than the Parkinson
volatility estimator, because it utilizes open and close
prices too. However, in this article, we use Parkinson’s
volatility estimator ðσ2proxy ¼ σ2PÞ. We have done all the
calculations for the Garman–Klass volatility estimator
too and found out that for this particular purpose the

Garman–Klass estimator does not improve the results
more than Parkinson estimator. Moreover, for the same
data sets where high and low prices are available, open
price is sometimes not available.

In this article, we therefore study the following
model:

σ2t ¼ ωþ α dσ2P;t�1 þ βσ2t�1; (10)

which we denote as RGARCH(1,1) (range GARCH)
model. This model can obviously be extended to the
RGARCH(p,q) model

σ2t ¼ ωþ
Xp
i¼1

αi dσ2P;t�i þ
Xq
j¼1

βjσ
2
t�j: (11)

Since it is generally known that GARCH(p,q) of order
higher than (1,1) is seldom useful (see e.g. Hansen and
Lunde 2005), we study the RGARCHmodel only in its
simplest version (10), i.e. the RGARCH(1,1) model.
Most of the article is devoted to the comparison of the
standard GARCH(1,1) model (5) and the RGARCH
(1,1) model (10). Since we do not study GARCH and
RGARCH models of higher orders, we sometimes
refer to GARCH(1,1) and RGARCH(1,1) models sim-
ply as GARCH and RGARCH models.

Our hypotheses are the following:

Hypothesis 1 An RGARCH(1,1) outperforms the
standard GARCH(1,1) model, both in sense of the in
sample fit and out of sample forecasting performance.

In addition, as previously explained, we expect
that the estimated coefficients of the GARCH mod-
els will be changed in such a way that more weight
will be put on the recent observation(s) of the vola-
tility proxy. This leads us to the second hypothesis.

Hypothesis 2 If we modify the GARCH(1,1) to the
RGARCH(1,1) model, we expect α to increase and β
to decrease.

Since the RGARCH(1,1) model puts more weight
on the most recent observation of the volatility, this
model will provide largest improvement in those
situations when the recent observation tells us
much more about the future volatility then the past
observations. This leads us to the following
hypothesis.
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Hypothesis 3 The superiority of the RGARCH(1,1)
model over the GARCH(1,1) model is the strongest
when day-to-day changes in volatility are large.

However, this does not mean that GARCH should
be better model in situations when changes in vola-
tility are small. We expect RGARCH model to be
superior in both situations, but its superiority should
be largest in situations when volatility changes a lot.

Even though we formulated three hypotheses, the
central one is Hypothesis 1. The purpose of
Hypothesis 2 and Hypothesis 3 is mostly to provide
some additional insights why and when RGARCH
model works better than standard GARCH model.

To evaluate the usefulness of the RGARCH
model, we briefly compare it not only with the
basic GARCH(1,1) model, but with the other com-
monly used GARCH models too. We compare the
RGARCH to the following models:

The GJR-GARCH of Glosten, Jagannathan, and
Runkle (1993):

σ2t ¼ ωþ αr2t�1 þ βσ2t�1 þ γr2t�1It�1; (12)

where It ¼ 1 if rt < 0 and zero otherwise.
The exponential GARCH (EGARCH) of Nelson

(1991):

log σ2t
� � ¼ ωþ α

rt�1

σt�1

����
����þ β log σ2t�1

� �

þ γ
rt�1

σt�1
: (13)

The standard deviation GARCH of Taylor (1986),
denoted in this article as stdGARCH, both in its
symmetric version:

σt ¼ ωþ α rt�1j j þ βσt�1 (14)

and in the asymmetric version, similar to Equation
(12), taking into account the leverage effect
(astdGARCH):

σt ¼ ωþ α rt�1j j þ βσt�1 þ γ rt�1j jIt�1: (15)

The last model we use is the component GARCH
(cGARCH):

σ2t �mt ¼ �ωþ α r2t�1 �mt
� �

þ β σ2t�1 �mt
� �

(16)

mt ¼ ωþ ρðmt � ωÞ þ ϕ r2t�1 � σ2t�1

� �
: (17)

Estimation

All the GARCH models, including the models (5),
(12)–(15) in our article, are estimated via maximum
likelihood. Since the RGARCH model changes only
the specification of the variance equation [Equation
(10) instead of (5)], we do not need to derive a new
likelihood function for the estimation of this model.
This in turns means that our model can be estimated
without any programming in widely available econo-
metric packages, which allow to include exogenous
variables in the variance equation, e.g. EViews, R or
OxMetrics. We simply specify that we want to esti-
mate a GARCH(0,1) model with an exogenous vari-
able dσ2P;t�1:

As mentioned earlier, we assume returns to be nor-
mally distributed with zero mean [Equation (2)] and
variance evolving according to a given GARCH model.
However, there are alternative distributions for residuals
to consider (e.g. Student’s t-distribution or generalized
error distribution). We did the calculations for alterna-
tive distributions too, but found that comparison of the
RGARCH model with the standard GARCH model is
unaffected by the assumption of the residuals’ distribu-
tion as long as the return distribution is the same for
both models. For the sake of brevity, we report only the
results for normally distributed residuals.

Two most closely related models are the condi-
tional autoregressive range model (CARR) of Chou
(2005) and range-based EGARCH model
(REGARCH) of Brandt and Jones (2006). A com-
mon feature of these models with the standard
GARCH models is the variance equation. The var-
iance equation for RGARCH model is created by a
modification of the GARCH(1,1) (5), the variance
equation of the CARR model is a modification of the
GJR-GARCH (12) and the variance equation of the
REGARCH is a modification of EGARCH (13).

However, CARR and REGARCH are otherwise sig-
nificantly different from RGARCH and other GARCH
models. Standard GARCH models as well as our
RGARCH model are estimated by fitting the condi-
tional distribution of returns. On the contrary, estima-
tion of the CARR and the REGARCH models is based
on the distribution of the range. Denote range as

Dt ¼ lnðHt=LtÞ: (18)

The REGARCH model is estimated by fitting the
conditional distribution of log-range:
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lnðDtÞ , Nð0:43þ lnðσtÞ; 0:292Þ; (19)

and the CARR model is estimated by fitting the
conditional distribution of range

Dt ¼ λtεt; (20)

where λt is the conditional mean of the range [vary-
ing according to equation similar to Equation (12),
and εt is distributed according to either the expo-
nential or the Weibull distribution.

In other words, these models are not estimated to
capture the conditional distribution of the returns,
but the conditional distribution of range instead.
Since these estimations are not implemented in stan-
dard econometric software, CARR and RGARCH
models must be programmed first.

On the contrary, RGARCH model combines the
ease of estimation of the standard GARCH models
with the precision of the range-based models.

Now we evaluate the performance of the
RGARCH model (10) by comparing it with the
standard GARCH(1,1) model (5), because these
two models are very closely related and their direct
comparison is very intuitive. We compare both in-
sample fit and out-of-sample forecasting perfor-
mance. The analysis of the in-sample fit will give
us some insights about how these models work.
Since the forecasting ability is typically the most
important feature of a volatility model, we focus
mostly on its forecasting ability.

In-sample comparison

We start the in-sample comparison between
RGARCH(1,1) and standard GARCH(1,1) models
by an estimation of Equations (5) and (10). This
allows us to see whether the coefficients change
according to our Hypothesis 2. To evaluate which
model is a better fit for the data, we use AIC.
However, as we are comparing models with an
equal number of parameters, any information cri-
terion would necessary produce the same raking of
these models. We believe that in our particular
case, when we are comparing two very closely
related models (the conditional distribution of
returns is the same, models differ in specification

of variance equation only), AIC is a sensible
criterion.

Moreover, we estimate the combined GARCH
(1,1) model

σ2t ¼ ωþ α1r
2
t�1 þ α2 dσ2P;t�1 þ βσ2t�1 (21)

too. This allows us to better understand which vola-
tility proxy: squared returns r2t�1 or the Parkinson

volatility proxy dσ2P;t�1; is a more relevant variable in

the variance equation.

Out-of-sample forecasting evaluation

To evaluate forecasting performance of two compet-
ing models, we first create forecasts from these mod-
els and afterwards evaluate which of these forecasts is
on average closer to the true volatility (we explain
later what is meant by ‘true volatility’).

To do this, we must first decide how to create the
forecasts, particularly how much data to use for the
forecasting. If we use too little data, the model will be
estimated imprecisely and the forecasting will not be
very good. On the other hand, if we use too much
data, we can estimate the model precisely, but when
the dynamics of the true volatility changes, our model
will adapt to this change too slowly. To avoid this
problem, we use rolling window forecasting3 with
four different window sizes: 300, 400, 500 and 600
trading days. These numbers are obviously somewhat
arbitrary, but we are focused on the comparison of
different volatility models, not on the search for the
optimal forecasting window. Due to space limitations,
we restrict our attention to one-day-ahead forecasts.

Next, we decide which benchmark to use (as the
‘true’ volatility). The most common benchmark is
squared returns. Squared returns are widely used
due to the data availability. However, squared
returns are a very noisy volatility proxy.
Therefore, we use the Parkinson volatility estima-
tor and the realized variance too. Due to space
limitations, we do not report results when the
Parkinson volatility estimator is used as a bench-
mark, though the results are even more convincing
than for squared returns. However, whenever the
data on the realized variance is available, we use it
as a benchmark.

3By rolling window forecasting with window size 100 we mean that we use the first 100 observations to forecast volatility on the 101, then we use
observations 2–101 to forecast volatility for day 102 and so on.
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To evaluate which forecast is closer to the true value,
we must next decide on the loss function. We use the
mean squared error (MSE) as a loss function. For the
sake of exposition, we report root mean squared error
(RMSE) instead ofMSE in all the tables. MSE is not only
the most common loss function, but it has many other
convenient properties, particularly the robustness. Since
we are using imperfect volatility proxies, the choice of
an arbitrary loss function (e.g. mean absolute error or
mean percentage error) could lead to problems, parti-
cularly to the inconsistent ranking of different models
(see Hansen and Lunde 2006; Patton 2011).

Next, we want to know whether the MSE for two
different models are statistically different. We adopt
the Diebold and Mariano (1995) test for this pur-
pose. The Diebold–Mariano test statistic (DM)
is computed in the following way: denote two
competing forecasts as cσ21;t and cσ22;t and the true

volatility as σ2true In our case cσ21;t ¼ σd2RGARCH;t and

N ð0; 0:12Þ is the competing model; in the majority
of this article, it is the GARCH(1,1) model. First, we
construct the vector of differences in squared errors

dt ¼ cσ21;t � σ2true;t

� �2
� cσ22;t � σ2true;t

� �2
: (22)

Next, we construct the Diebold–Mariano test statistic

DM ¼
�dffiffiffiffiffiffiffiffiffiffi
V̂ð�dÞ

q ; (23)

where �d denotes the sample mean of dt, and V̂ð�dÞ is
variance of the sample mean. DM is assumed to have
a standard normal distribution. Later in the results,
we denote by asterisk � (��) cases when the DM test

statistics lies below 5-percentile (1-percentile), i.e.
the cases where we can reject at 5% (1%) confidence
level, the hypothesis that the competing model has
smaller MSE than the RGARCH(1,1) model.4

Opening jump

In the previous discussion, we assumed that all the
models are estimated on the close-to-close returns
defined by Equation (1). This is typically the case for
the standard GARCH models. On the other hand, a
common approach in the literature dealing with high
frequency data is to model open-to-close returns

rt ¼ logðPtÞ � logðOtÞ: (24)

The volatility for the trading period (from open to
close of the market) can be estimated quite precisely,
whereas this precision is not available for estimation
of the period over the night (the in opening jump).
Moreover, the dynamics of the opening jumps is
arguably different from the dynamics of the volatility
of the trading part of the day. Since Parkinson vola-
tility estimator (8) estimates open-to-close volatility
only, we face the same problem. We follow the
standard approach in the realized variance literature
and the models presented in this article are esti-
mated on the open-to-close returns. We have done
the same estimations for close-to-close returns. Main
results remain the same (RGARCH model out-per-
forms GARCH model).5 These results are available
in previous versions of the article or upon request
from the author.

4In our data, the DM test statistic never lies above 95-percentile.
5However, there is on difference worth mentioning. The Parkinson volatility estimator estimates the volatility only for the open-to-close period. If we
estimate RGARCH model on close-to-close returns, we must be careful with interpretation of the α-coefficient in the RGARCH model. As long as opening
jumps are present, the Parkinson volatility estimator underestimates volatility of daily returns,

E bσ2P
� �

< Eðr2Þ ¼ σ2: (25)

As a result, the estimated coefficient α will be larger to balance this bias in bσ2P: This intuition can explain one seemingly surprising result. The RGARCH model
estimated on the close-to-close data typically yield coefficients α and β such that αþ β > 1; even though estimation of the standard GARCH(1,1) model
yields coefficients α and β such that αþ β < 1: However, as we just explained, these α-coefficients are not directly comparable in presence of opening
jumps. We illustrate this on a simple example. If we specify GARCH(1,1) in the following form:

σ2t ¼ ωþ α
r2t�1

2
þ βσ2t�1;

then the estimated coefficient α will be exactly twice as large as when we estimate Equation (5). Therefore, if the RGARCH model is estimated on the close-
to-close returns, the coefficient α does not have the same interpretation as in standard GARCH models. Even though we expect α to increase and β to
decrease, if we use close-to-close returns, we must focus on the coefficient β only. The coefficient β will change only because a less noisy volatility proxy is
used, whereas change in coefficient α is caused by both high precision and bias of the Parkinson volatility estimator.
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III. Data and results

To show the generality of our idea, we study a wide
class of assets, particularly 30 individual stocks, 6
stock indices and simulated data. Due to space lim-
itations, our analysis cannot be as detailed as it
would be if we studied a single asset. We believe
that the analysis of the main features of the problem
on the broad data set is more convincing than very
detailed analysis based on a small data set. We use
daily data, particularly the highest, the lowest, the
opening and the closing price of the day.

Stocks

We study the components6 of the Dow Jones
Industrial Average, namely the stocks with tickers
AA, AXP, BA, BAC, C, CAT, CVX, DD, DIS, GE,
GM, HD, HPQ, IBM, INTC, JNJ, JPM, CAG7, KO,
MCD, MMM, MRK, SFT, PFE, PG, T, UTX, VZ and
WMT. Data were obtained from the CRSP database
and consist of 4423 daily observations of high, low
and close prices from 15 June 1992 to 31 December
2010.

In-sample analysis
Table 1 presents estimated coefficients for the
Equations (5) and its modified version (7) together
with values of AIC.

For every single stock, the coefficients in the
RGARCH(1,1) have changed in exactly the same
way we expected. In addition, according to AIC,
modified GARCH(1,1) is superior to its standard
counterpart for every single stock in our sample.

Next, we estimate the Combined GARCH(1,1)
model [Equation (21)]. Results of this estimation
(reported in Table 2 together with respective
p-values) show that coefficients α2 is always highly
significant, the coefficient α1 is insignificant in most
of the cases. and even when it is statistically signifi-
cant, it is rather small. This confirms that σ2P is a
better volatility proxy than r2 and when we have the
first one available, the inclusion of the second one
can improve the model only marginally. Note that
the coefficient α1 is negative in most cases. This is
expected, since an optimal volatility estimator (9)
combines the Parkinson volatility estimator with

squared returns in such a way that squared returns
have negative weight. We discuss this more in the
subsection with simulated data.

Out-of-sample forecasting performance
As seen in the previous subsection, the RGARCH
model outperforms the standard GARCH model in
the in-sample fit of the data. The next obvious ques-
tion is the comparison of the predictive ability of
these models. To answer this question, we compare
one-day ahead forecasts of the models (5) and (7)
with squared returns as a benchmark. Results are
presented in the Table 3.

As we can see from Table 3, the RGARCH(1,1)
model outperforms GARCH(1,1). All the cases
(stock-estimation window pairs) when the difference
is statistically significant favour the RGARCH
model. The reason the difference is often insignif-
icant is a very noisy volatility benchmark (squared
returns). Therefore, we should postpone the evalua-
tion of size of the improvement of RGARCH(1,1)
model over GARCH(1,1) model until next subsec-
tions, where we use realized variance as a less noisy
benchmark.

The next obvious question is how our RGARCH
performs relative to other more complicated
GARCH models. Even though a detailed answer to
this question is beyond the scope of this article, we
provide some basic comparison. We compare the
RGARCH model (10) not only with the basic
GARCH model (5), but with its other versions
(12)–(16) as well. We chose an estimation window
equal to 400. A shorter estimation window would
favour the RGARCH model even more. A too long
estimation window is not desirable, because, as
Table 3 documents, volatility forecasting becomes
less precise when we use a too long estimation
window.

As we can see from Table 4, the comparison of
the RGARCH model with other GARCH models is
very similar to the previous comparison, the
RGARCH model outperforms other GARCH mod-
els. When we consider the cases where the difference
is statistically significant, the RGARCH model
always outperforms all other studied GARCH mod-
els. In rest of the cases, when the difference is not

6Components of stock indices change over time. These stocks were DJI components on 1 January 2009.
7Since historical data for KFT (component of DJI) are not available for the complete period, we use its competitor CAG instead.
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statistically significant, the RGARCH model out per-
forms other studied GARCH models most of the
time. Remember that we do not argue that
RGARCH model is the best volatility model. It is
clearly not, as it does not take into account, e.g.
leverage effect. Therefore, the comparison of the
RGARCH model with other GARCH models serves
mostly the illustrative purposes, particularly to show
that even such a simple model (but based on more
precise data) can outperform more complicated
models.

The results summarized in Tables 3 and 4 show
the superior performance of the RGARCH model.
The improvement in the RGARCH model in com-
parison to the basic GARCH(1,1) model seems to be
rather small at the first glance. Even though the
RGARCH model outperforms the basic GARCH
(1,1) model in most cases, the average improvement
of the RMSE reported in Table 3 is about 1.2%. This

could give us a first impression that the improve-
ment of the RGARCH(1,1) model over the GARCH
(1,1) model is rather small.

However, there is a potential problem with this
standard evaluation procedure, where we compare
the forecasted volatility with the squared returns.
Even though the squared returns are unbiased esti-
mates of the volatility, they are very noisy8. The
most natural solution to this problem is to use the
true volatility as a benchmark, or, if unavailable,
some other less noisy volatility proxy. Following
subsections use less noisy volatility proxies (realized
variance for the stock indices and true volatility for
simulated data). However, due to stock data limita-
tions, we suggest an alternative way to compare the
basic GARCH(1,1) model and the RGARCH(1,1)
model. Instead of comparing squared returns with
volatility forecast directly, we can compare the like-
lihood that the returns were drawn from the

Table 1. Estimated coefficients of the GARCH(1,1) model σ2t ¼ ωþ αr2t�1 þ βσ2t�1 and the RGARCH(1,1) model

σ2t ¼ ωþ α dσ2P;t�1 þ βσ2t�1, reported together with the values of AIC of the respective equations.

GARCH(1,1) RGARCH(1,1)

Ticker ω α β AIC ω α β AIC

AA 1.61E-06 0.036 0.960 –5.121 4.21E-06 0.066 0.926 –5.131
AXP 1.61E-06 0.071 0.927 –5.320 2.26E-06 0.160 0.842 –5.348
BA 2.67E-06 0.057 0.934 –5.497 5.20E-06 0.148 0.830 –5.520
BAC 1.69E-06 0.080 0.917 –5.508 1.77E-06 0.197 0.816 –5.529
CAT 2.78E-06 0.045 0.947 –5.303 1.11E-05 0.145 0.826 –5.325
CSCO 2.98E-06 0.078 0.921 –4.756 4.04E-06 0.184 0.814 –4.787
CVX 3.29E-06 0.066 0.917 –5.838 5.20E-06 0.134 0.840 –5.854
DD 1.04E-06 0.038 0.959 –5.551 2.53E-06 0.088 0.901 –5.573
DIS 2.57E-06 0.053 0.939 –5.460 5.51E-06 0.107 0.867 –5.494
GE 8.38E-07 0.062 0.937 –5.742 2.54E-06 0.180 0.811 –5.765
HD 2.82E-06 0.053 0.939 –5.313 7.22E-06 0.121 0.852 –5.334
HPQ 2.15E-06 0.035 0.961 –4.997 3.06E-06 0.054 0.941 –5.008
IBM 8.21E-07 0.054 0.946 –5.552 6.67E-07 0.153 0.860 –5.574
INTC 2.60E-06 0.054 0.942 –4.943 4.52E-06 0.142 0.855 –4.966
JNJ 1.28E-06 0.069 0.926 –6.021 1.47E-06 0.170 0.824 –6.044
JPM 1.82E-06 0.080 0.919 –5.273 1.86E-06 0.158 0.841 –5.307
CAG 1.80E-06 0.057 0.936 –5.815 5.68E-06 0.238 0.740 –5.843
KO 5.68E-07 0.044 0.954 –5.965 6.22E-07 0.114 0.883 –5.980
MCD 1.84E-06 0.046 0.947 –5.654 2.28E-06 0.091 0.898 –5.673
MMM 1.57E-06 0.033 0.959 –5.890 8.19E-06 0.136 0.814 –5.911
MRK 6.02E-06 0.058 0.920 –5.513 1.17E-05 0.124 0.826 –5.533
MSFT 1.05E-06 0.062 0.937 –5.392 6.69E-07 0.195 0.809 –5.408
PFE 1.80E-06 0.046 0.948 –5.509 6.52E-06 0.177 0.805 –5.520
PG 1.69E-06 0.057 0.934 –5.953 4.79E-06 0.213 0.764 –5.989
T 1.27E-06 0.057 0.940 –5.621 2.36E-06 0.109 0.881 –5.629
TRV 3.95E-06 0.074 0.913 –5.544 9.41E-06 0.198 0.782 –5.586
UTX 2.44E-06 0.074 0.918 –5.700 5.05E-06 0.198 0.788 –5.723
VZ 1.46E-06 0.052 0.943 –5.695 4.34E-06 0.159 0.826 –5.704
WMT 1.39E-06 0.058 0.939 –5.617 1.91E-06 0.127 0.861 –5.638
XOM 2.70E-06 0.074 0.912 –5.922 5.32E-06 0.164 0.807 –5.949

8A comparison of the forecasted volatility with squared returns will penalize the volatility forecast whenever the squared return and volatility forecast differ,
even if the volatility forecast was perfect. Moreover, when we have two models and one of them forecasts volatility to be σ2 ¼ 0:12 on the day when
the stock return is r ¼ 1 and the second model forecasts volatility to be σ2 ¼ 32 on the day when stock return is r ¼ ffiffiffiffiffi

10
p

; then MSE (RMSE) will favour

the first model ð 0:12 � 12
� �2

< 10� 32ð Þ2Þ; even though the probability of the return r ¼ 1 being drawn from the distribution N ð0; 0:12Þ is more than
104°-times smaller than probability of the return r ¼ ffiffiffiffiffi

10
p

being drawn from the distribution N ð0; 32Þ:
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distribution parametrized by the given volatility.
This approach is not perfect either, because the
calculated probability depends on the specification
of the distribution of the stock returns. Since we
compare two models with the same specification of
the conditional distribution of returns, N 0; σ2t;1

� �
and N 0; σ2t;2

� �
; which differ only in the specifica-

tion of the variance equation, this is not a problem.
We now compare the basic GARCH(1,1) model
with the RGARCH model in terms of the value of
the log-likelihood function. The log-likelihood is
calculated according to the following formula:

LLF ¼ � n
2
ln ð2πÞ � 1

2

Xn
t¼1

ln bσ2t
� �

� 1
2

Xn
t¼1

r2tbσ2t ; (26)

where σ2t is the volatility forecasted from the studied
volatility model (using past information only).

Table 5 confirms our previous comparison
between the RGARCH model and the standard

GARCH model. The RGARCH model outperforms
the standard GARCH(1,1) model for basically every
stock and every estimation window.

Stock indices

In addition to the individual stocks of the Dow Jones
Industrial Average stock index, we decided to com-
pare the performance of the RGARCH model to the
standard GARCH model on the major world indices
(French CAC 40, German DAX, Japanese Nikkei
225, Britain’s FTSE 100 and American DJI and
NASDAQ 100). There are two reasons for this.
First, volatility dynamics is generally different for
individual stocks and for the whole stock markets.
Second, estimates of realized variance, which is a
proxy for the true variance, are publicly available
for these indices9. Open, high, low and close prices
are downloaded from finance.yahoo.com. Data cov-
ers the period 3 January 1993–27 April 2009 for
open, high and low prices and the period 3 January
1996–27 April 2009 for the realized variance. Due to
small differences in trading days in different mar-
kets, the number of observations varies accordingly.

Table 2. Estimated coefficients and p-values for the combined GARCH(1,1) model σ2t ¼ ωþ α1r2t�1 þ α2
dσ2P;t�1 þ βσ2t�1.

Combined GARCH(1,1)

Ticker ω p-Value α1 p-Value β p-Value α2 p-Value

AA 4.37E-06 0.000 –0.002 0.811 0.925 0.000 0.069 0.000
AXP 2.33E-06 0.004 –0.041 0.003 0.827 0.000 0.218 0.000
BA 6.07E-06 0.000 –0.028 0.013 0.810 0.000 0.191 0.000
BAC 1.76E-06 0.002 0.007 0.546 0.819 0.000 0.187 0.000
CAT 1.47E-05 0.000 –0.052 0.000 0.783 0.000 0.231 0.000
CSCO 3.82E-06 0.015 –0.025 0.058 0.812 0.000 0.211 0.000
CVX 5.67E-06 0.000 –0.018 0.135 0.829 0.000 0.161 0.000
DD 2.78E-06 0.000 –0.025 0.002 0.896 0.000 0.117 0.000
DIS 5.88E-06 0.000 –0.034 0.001 0.864 0.000 0.140 0.000
GE 2.56E-06 0.000 –0.005 0.704 0.809 0.000 0.186 0.000
HD 8.19E-06 0.000 –0.018 0.095 0.837 0.000 0.150 0.000
HPQ 3.01E-06 0.000 0.001 0.849 0.941 0.000 0.053 0.000
IBM 6.69E-07 0.353 –0.010 0.178 0.853 0.000 0.171 0.000
INTC 4.90E-06 0.012 –0.032 0.006 0.842 0.000 0.187 0.000
JNJ 1.47E-06 0.000 0.005 0.598 0.826 0.000 0.162 0.000
JPM 1.90E-06 0.017 –0.030 0.013 0.829 0.000 0.200 0.000
CAG 6.83E-06 0.000 –0.042 0.002 0.699 0.000 0.315 0.000
KO 6.15E-07 0.046 –0.002 0.773 0.882 0.000 0.117 0.000
MCD 4.61E-06 0.000 –0.041 0.000 0.841 0.000 0.178 0.000
MMM 9.43E-06 0.000 –0.092 0.000 0.790 0.000 0.242 0.000
MRK 1.41E-05 0.000 –0.029 0.009 0.796 0.000 0.173 0.000
MSFT 5.69E-07 0.534 –0.018 0.240 0.798 0.000 0.224 0.000
PFE 6.28E-06 0.000 0.007 0.496 0.813 0.000 0.163 0.000
PG 5.18E-06 0.000 –0.061 0.000 0.733 0.000 0.303 0.000
T 1.95E-06 0.001 0.026 0.000 0.894 0.000 0.072 0.000
TRV 1.03E-05 0.000 –0.041 0.000 0.768 0.000 0.252 0.000
UTX 5.49E-06 0.000 –0.020 0.107 0.773 0.000 0.232 0.000
VZ 3.96E-06 0.000 0.018 0.009 0.840 0.000 0.129 0.000
WMT 1.97E-06 0.003 –0.010 0.338 0.855 0.000 0.142 0.000
XOM 5.75E-06 0.000 –0.030 0.021 0.794 0.000 0.204 0.000

9Heber et al. (2009).
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For the in-sample analysis we use the data ran-
ging from 3 January 1993 to 27 April 2009. For the
out of sample comparison, we use the volatilities
forecasted for the period 3 January 1996–27 April
2009. However, estimates of realized variance are
not available for some trading days. These days are
included in the volatility forecast comparison
when squared returns are used as a benchmark,
but excluded when the benchmark is realized
variance.

In-sample analysis
Table 6 presents estimated coefficients for the
GARCH model (5) and the RGARCH model (10)
together with the values of AIC. The results are
again in line with those in Table 1. GARCH model
performs better than the standard GARCH model
for every index. The coefficients in the RGARCH are
changed as expected – coefficient α is increased and
coefficient β is decreased for all the indices.

Now we estimate the combined GARCH model
(21). The results (presented in Table 7) are consis-
tent with those in Table 2.

Out–of-sample forecasting performance
Now we compare the forecasting performance of
the RGARCH model and the standard GARCH
model against both squared returns ðr2Þ and rea-
lized variance (RV) used as a benchmark. Results
are given in Table 8.

This table provides the strongest evidence for
the superiority of the RGARCH model over the
standard GARCH model. For every single index
and for every single estimation window size, the
RGARCH model outperforms the standard
GARCH model. The difference in the forecasting
performance of these two models is much more
obvious when we use realized variance as a bench-
mark (since it is much less noisy than squared
returns).

Table 3. Comparison of the forecasting performance of the GARCH(1,1) model σ2t ¼ ωþ αr2t�1 þ βσ2t�1 and the RGARCH(1,1) model

σ2t ¼ ωþ α dσ2P;t�1 þ βσ2t�1.

GARCH(1,1) RGARCH(1,1)

Ticker w = 300 w = 400 w = 500 w = 600 w = 300 w = 400 w = 500 w = 600

AA 1.277 1.296 1.309 1.322 1.268 1.281 1.291 1.305
AXP 1.167 1.177 1.189 1.202 1.179 1.199 1.203 1.215
BA 0.656 0.657 0.657 0.662 0.649 0.650 0.651 0.657
BAC 2.594 2.621 2.646 2.673 2.791 2.824 2.701 2.761
CAT 0.710 0.717 0.722 0.731 0.694* 0.701 0.710 0.719
CSCO 1.749 1.761 1.781 1.806 1.700 1.708* 1.736* 1.747*
CVX 0.643 0.648 0.657 0.662 0.634 0.635 0.642 0.647
DD 0.675 0.679 0.686 0.692 0.660* 0.665** 0.671** 0.677**
DIS 0.684 0.688 0.696 0.703 0.665* 0.669* 0.678* 0.682*
GE 0.869 0.870 0.879 0.888 0.882 0.865 0.862 0.871
HD 0.794 0.801 0.809 0.815 0.789 0.800 0.800 0.844
HPQ 1.050 1.058 1.070 1.083 1.043 1.057 1.063 1.077
IBM 0.631 0.635 0.641 0.648 0.624* 0.629* 0.637 0.643
INTC 1.194 1.195 1.205 1.218 1.161* 1.169* 1.180* 1.193*
JNJ 0.359 0.358 0.356 0.357 0.350* 0.349* 0.350 0.351
JPM 1.757 1.787 1.805 1.817 1.711 1.724* 1.736** 1.758**
CAG 0.534 0.537 0.538 0.543 0.514 0.531 0.536 0.542
KO 0.496 0.495 0.497 0.500 0.488 0.488 0.491 0.496
MCD 0.670 0.670 0.676 0.678 0.665 0.667 0.682 0.694
MMM 0.446 0.446 0.451 0.455 0.444 0.445 0.449 0.452
MRK 0.642 0.649 0.653 0.660 0.632* 0.636** 0.639* 0.649**
MSFT 0.676 0.683 0.688 0.696 0.676 0.673* 0.675** 0.684**
PFE 0.540 0.546 0.545 0.553 0.546 0.547 0.552 0.555
PG 0.505 0.508 0.509 0.510 0.493* 0.493** 0.498 0.498
T 0.612 0.614 0.619 0.626 0.597 0.601* 0.608* 0.613*
TRV 1.161 1.169 1.177 1.190 1.180 1.178 1.185 1.188
UTX 0.689 0.698 0.701 0.710 0.681* 0.686** 0.695* 0.702**
VZ 0.570 0.573 0.577 0.583 0.561** 0.563** 0.569* 0.575**
WMT 0.625 0.628 0.633 0.640 0.612 0.618 0.619 0.628
XOM 0.610 0.612 0.614 0.621 0.588** 0.590** 0.597* 0.604*

Numbers in this table are 1000 × RMSE of the 1-day-ahead rolling window forecast reported for different window sizes w. Asterisk * and** indicate when the
difference is significant at the 5% and1% level.
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Simulated data

In reality, we can never know for sure what the
true volatility was. However, if we simulate the
data, we know the true volatility exactly.
Simulation therefore provides a convenient tool
to study different volatility models. We can com-
pare not only the overall performance of different
models, but we can study under which conditions
these models perform particularly good or bad. On
the other hand, it is always questionable how close
the simulated data are to the real world. In order
to convince the reader that the simulated data are
close to reality (and we did not construct them
deliberately to show superiority of our model), we
borrow the credibility of Alizadeh, Brandt, and
Diebold (2002). They simulate the data in the
following way. First, we simulate the volatility
process

ln σt ¼ ln �σ þ ρHðln σt�1 � ln �σÞ þ μ 1εt�1 (27)

with parameters ln ð�σÞ ¼ �2:5; ρH ¼ 0:985 and μ 1 ¼
0:75=

ffiffiffiffiffiffiffi
257

p ¼ 0:048 and residuals ε drawn from

standard normal distribution. For every day
t ¼ 1; 2; . . . ; 100000, we simulate a Brownian motion10

with zero drift term and diffusion term equal to σt: Save
the highest, the lowest and the final value of this
Brownian motion. According to Alizadeh, Brandt, and
Diebold (2002), volatility dynamics (27) together with
mentioned parameters is broadly consistent with litera-
ture on stochastic volatility.

The volatility process (27) does not favour
directly either of the competing models GARCH
(5) and RGARCH (10). Volatility evolves over the
time, and neither past returns nor past high or low
prices influence the future volatility in any way.
Note that there are no opening jumps in this these
simulated data.

In addition to data simulated according to
Equation (27) with parameter μ 1¼ 0:75=

ffiffiffiffiffiffiffi
257

p
; we

simulate the data for two other parameter values too,
μ0:5 ¼ 0:5μ 1 and μ2 ¼ 2μ 1: Parameter μ 1 represents
a case with medium daily changes in volatility and
parameters μ0:5 and μ2 represent cases with small
and large changes in daily volatility.

Table 4. Comparison of the forecasting performance of the RGARCH(1,1) model σ2t ¼ ωþ α dσ2P;t�1 þ βσ2t�1 and several different
GARCH models.
ticker RGARCH GARCH GJR EGARCH stdGARCH astdGARCH cGARCH

AA 1.281 1.296 1.286 1.277 1.294 1.270 1.309
AXP 1.199 1.177 1.189 1.174 1.173 1.178 1.177
BA 0.648 0.655 0.647 0.659 0.655 0.650 0.650
BAC 2.825 2.623 2.654 2.549 2.631 2.595 2.550
CAT 0.705 0.720 0.716 0.718 0.722* 0.716 0.723*
CSCO 1.881 1.928** 1.963 1.895 1.909* 1.888 1.937*
CVX 0.633 0.646* 0.628 0.630 0.653 0.632 0.662**
DD 0.663 0.678** 0.676* 0.683** 0.678** 0.680** 0.678**
DIS 0.668 0.688* 0.685 0.688 0.690 0.689 0.690*
GE 0.863 0.869 0.862 0.855 0.866 0.863 0.887
HD 0.803 0.804 0.799 0.799 0.807 0.799 0.803
HPQ 1.057 1.058 1.056 1.059 1.058 1.056 1.071*
IBM 0.639 0.645 0.633 0.635 0.642 0.633* 0.650*
INTC 1.170 1.196* 1.160 1.158 1.175 1.156 1.207*
JNJ 0.347 0.355* 0.351 0.351 0.353 0.351 0.355*
JPM 1.724 1.786* 1.711 1.715 1.782* 1.730 1.761
CAG 0.531 0.537 0.536 0.533 0.530 0.532 0.529
KO 0.485 0.492 0.505 0.492 0.487 0.488 0.491
MCD 0.669 0.672 0.695 0.824 0.663 0.663 0.668
MMM 0.442 0.443 0.444 0.441 0.442 0.442 0.447
MRK 0.635 0.648** 0.652** 0.648* 0.647* 0.647* 0.653**
MSFT 0.674 0.684* 0.675 0.676 0.686* 0.677 0.686*
PFE 0.562 0.561 0.567 0.555 0.556 0.554 0.560
PG 0.492 0.507** 0.507** 0.503* 0.503* 0.502* 0.508**
T 0.601 0.613* 0.607 0.611 0.613 0.609 0.613
TRV 1.176 1.167 1.174 1.173 1.176 1.175 1.171
UTX 0.685 0.697** 0.697 0.695 0.697** 0.691 0.703
VZ 0.562 0.571** 0.569 0.569 0.570** 0.566 0.574*
WMT 0.621 0.632 0.625 0.629 0.626 0.624 0.633
XOM 0.588 0.609** 0.595 0.594 0.613 0.600 0.618**

Numbers in this table are 1000 × RMSE of the 1-day-ahead rolling window forecast with forecasting window equal to 400.

10We use 100,000 discrete steps for the approximation of the continuous Brownian motion.
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In-sample analysis
Table 9 presents estimated coefficients for the stan-
dard GARCH model (5) and the RGARCH model
(10) together with the values of AIC. As expected,
the RGARCH model performs better than the stan-
dard GARCH model.

Coefficients in the RGARCH are changed in
exactly the same way as in the previous section –
coefficient α is increased and coefficient β is
decreased. Note that αþ β is smaller than one for
both GARCH and RGARCH model (implying sta-
tionarity) and αþ β is approximately the same

(around 0.98) for both models. This means that
both GARCH and RGARCH models imply the
same (high) volatility persistence. This is very nat-
ural, since we simulate volatility as a highly persis-
tent process. Note that when volatility changes more
rapidly (μ increases), more weight is put on the
recently observed volatility proxy (α increases) and
less weight is put on the past observation of volatility
(β decreases).

Now we estimate the combined GARCH model
(21). As we can see (Table 10), the results are gen-
erally consistent with those in Table 2.

Table 5. Comparison of forecasting performance GARCH(1,1) model σ2t ¼ ωþ αr2t�1 þ βσ2t�1 and the RGARCH(1,1) model

σ2t ¼ ωþ α dσ2P;t�1 þ βσ2t�1.

GARCH(1,1) RGARCH(1,1)

Ticker w = 300 w = 400 w = 500 w = 600 w = 300 w = 400 w = 500 w = 600

AA 9803 9580 9267 9020 9873 9597 9320 9032
AXP 10,377 10,166 9881 9595 10,502 10,242 9969 9688
BA 10,434 10,225 9809 9660 10,500 10,258 9993 9708
BAC 10,687 10,451 10,154 9875 10,783 10,527 10,236 9949
CAT 10,105 9916 9631 9342 10,202 9950 9675 9385
CSCO 9309 9080 8825 8528 9478 9237 8955 8646
CVX 11,371 11,017 10,853 10,576 11,440 11,145 10,882 10,599
DD 10,853 10,593 10,321 10,050 10,916 10,641 10,377 10,095
DIS 10,535 10,298 10,024 9747 10,681 10,411 10,142 9859
GE 11,086 10,860 10,567 10,258 11,176 10,902 10,617 10,325
HD 10,266 10,024 9729 9479 10,372 10,084 9809 9542
HPQ 9587 9255 9076 8792 9715 9415 9174 8869
IBM 10,813 10,575 10,247 9972 10,986 10,716 10,378 10,130
INTC 9420 9208 8937 8665 9484 9278 9001 8735
JNJ 12,013 11,776 11,492 11,230 12,063 11,126 11,522 11,264
JPM 10,158 10,014 9730 9464 10,345 10,113 9830 9554
CAG 11,421 11,192 10,939 10,681 11,563 11,301 10,994 10,722
KO 11,682 11,454 11,155 10,924 11,782 11,517 11,250 10,980
MCD 11,058 10,846 10,564 10,288 11,129 10,871 10,596 10,320
MMM 11,238 11,105 10,819 10,542 11,377 11,153 10,878 10,599
MRK 10,131 9775 9632 9294 10,348 10,120 9813 9570
MSFT 10,234 10,038 9724 9478 10,396 10,171 9867 9611
PFE 10,741 10,499 10,222 9959 10,827 10,564 10,269 10,004
PG 11,512 11,236 10,962 10,709 11,571 11,369 11,081 10,777
T 10,948 10,704 10,459 10,172 11,002 10,744 10,473 10,206
TRV 10,801 10,614 10,312 10,069 10,899 10,678 10,395 10,111
UTX 11,013 10,790 10,477 10,179 11,054 10,840 10,556 10,269
VZ 11,132 10,892 10,605 10,329 11,198 10,930 10,645 10,361
WMT 11,004 10,778 10,510 10,109 11,130 10,860 10,558 10,276
XOM 11,464 11,223 10,947 10,657 11,567 11,294 11,014 10,729

Numbers in this table are the log-likelihood function (26) of the returns rt being drawn from the distributions N 0; bσ2t
� �

, where bσ2t is a 1-day-ahead rolling
window volatility forecast reported for different window sizes w.

Table 6. Estimated coefficients of the GARCH(1,1) model σ2t ¼ ωþ αr2t�1 þ βσ2t�1 and its modified version RGARCH(1,1) σ2t ¼
ωþ α dσ2P;t�1 þ βσ2t�1; reported together with the values of AIC of the respective equations for the simulated data.

GARCH(1,1) RGARCH(1,1)

Index ω α β AIC ω α β AIC

CAC40 1.03E-06 0.075 0.920 −6.327 1.80E-06 0.182 0.821 −6.352
DAX 6.16E-07 0.088 0.911 −6.417 1.28E-06 0.174 0.842 −6.446
DJI 9.39E-07 0.083 0.910 −6.674 −1.77E-06 0.128 0.717 −6.645
FTSE 7.64E-07 0.085 0.910 −6.581 1.47E-06 0.188 0.837 −6.598
NASDAQ 9.43E-07 0.056 0.942 −5.534 4.30E-07 0.135 0.893 −5.561
NIKKEI 3.20E-06 0.093 0.890 −6.084 1.64E-06 0.179 0.854 −6.113
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The main difference is that the negative coeffi-
cient α1 is now clearly significant. As Garman and
Klass (1980) showed, the optimal volatility forecast
based on open, high, low and close price is (9). It is a
weighted average of the Parkinson volatility estima-
tor (8) and squared open-to-close returns, where
squared returns have negative weight. This is the
reason why coefficient α1 is negative. Note that the
ration between the coefficients α1 and α2 is very

close to the ratio predicted from the Garman–Klass
formula. As previously mentioned, we use the
Parkinson volatility estimator (8) instead of
Garman and Klass (9) volatility estimator because
of the data concerns (open prices are often not
available).

Out-of-sample forecasting performance
Now we compare the forecasting performance of the
RGARCH model and the standard GARCH model
on the simulated data. Results are shown in Table 11.

These results illustrate the benefit of using simu-
lated data. Now we know exactly what the true
volatility is and we can use it as a benchmark. In
addition, simulation allows us to have much larger
data sample (100,000 observations of the simulated
data instead of 4423 observations of the real data),
which in turns mean that all the results are highly
statistically significant.

First note that the results obtained from the simu-
lated data (Table 11) are consistent with results in
Tables 3 and 8. Tables 3 and 8 show that the
RGARCH model outperforms the standard
GARCH model most of the time. Since the simu-
lated data are much larger, we basically got rid of the
noise and now we can see (Table 11) exactly how

Table 7. Estimated coefficients and p-values for the combined GARCH(1,1) model σ2t ¼ ωþ α1r2t�1 þ α2
dσ2P;t�1 þ βσ2t�1:.

Index

Combined GARCH(1,1)

ω p-Value α1 p-Value β p-Value α2 p-Value

CAC40 1.93E-06 0.000294 −0.064 7.02E-05 0.789 0 0.286 0
DAX 1.61E-06 4.00E-15 −0.064 2.74E-05 0.815 0 0.276 0
DJI 5.69E-07 0.003 0.080 0 0.896 0 0.008 1.45E-04
FTSE 1.51E-06 1.33E-05 −0.005 0.723 0.834 0 0.198 5.06E-11
NASDAQ 3.07E-07 0.553 −0.050 2.97E-05 0.891 0 0.204 0
NIKKEI 1.11E-06 0.031043 −0.088 1.72E-10 0.837 0 0.319 0

Table 8. Comparison of the forecasting performance of the GARCH(1,1) model σ2t ¼ ωþ αr2t�1 þ βσ2t�1 and the RGARCH(1,1) model

σ2t ¼ ωþ α dσ2P; t�1 þ βσ2t�1: Numbers in this table are 1000� RMSE of the one-day-ahead rolling window forecasts reported for
different window sizes w and different benchmarks (squared returns r2 and the realized variance RV) for the stock indices.

GARCH(1,1) RGARCH(1,1)

Index Bench w = 300 w = 400 w = 500 w = 600 w = 300 w = 400 w = 500 w = 600

CAC40 r2 0.335 0.339 0.342 0.346 0.331 0.335 0.338 0.342
RV 0.185 0.181 0.179 0.180 0.172** 0.169** 0.167** 0.167**

DAX r2 0.474 0.477 0.481 0.488 0.446** 0.454** 0.461* 0.469*
RV 0.252 0.242 0.236 0.235 0.212** 0.208** 0.207** 0.207**

DJI r2 0.353 0.355 0.362 0.367 0.336 0.341 0.347 0.350
RV 0.174 0.172 0.176 0.179 0.142** 0.142** 0.141** 0.139**

FTSE r2 0.376 0.382 0.385 0.390 0.364* 0.368** 0.372** 0.377**
RV 0.201 0.226 0.212 0.209 0.196 0.202* 0.189* 0.186*

NASDAQ r2 0.931 0.939 0.949 0.963 0.908** 0.917** 0.929** 0.942**
RV 0.464 0.452 0.440 0.446 0.431* 0.423* 0.426 0.432

NIKKEI r2 0.467 0.475 0.478 0.478 0.456* 0.461 0.467 0.470
RV 0.237 0.283 0.269 0.249 0.196** 0.188** 0.177** 0.173**

Table 9. Estimated coefficients of the GARCH(1,1) model σ2t ¼
ωþ αr2t�1 þ βσ2t�1 and the RGARCH(1,1) model σ2t ¼
ωþ α dσ2P;t�1 þ βσ2t�1; reported together with the values of
AIC of the respective equations for the simulated data.

GARCH(1,1) RGARCH(1,1)

ω α β AIC ω α β AIC

μ0:5 1.77E-04 0.016 0.958 −2.143 1.76E-04 0.053 0.922 −2.149
μ1 1.73E-04 0.044 0.933 −2.112 1.61E-04 0.122 0.857 −2.133
μ2 1.50E-04 0.114 0.875 −2.037 1.20E-04 0.274 0.723 −2.101

Table 10. Estimated coefficients and p-values for the combined
GARCH(1,1) model σ2t ¼ ωþ α1r2t�1 þ α2

dσ2P;t�1 þ βσ2t�1 for the
simulated data.

Combined GARCH(1,1)

ω α1 β α2

μ0:5 1.71E-04 −0.027 0.908 0.094
μ1 1.53E-04 −0.057 0.834 0.204
μ2 1.13E-04 −0.119 0.686 0.431
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much better the RGARCH performs. Let us focus for
now primarily on the data simulated with the para-
meter μ1; which is arguably closest to the real world.
The improvement seems to be small, just around 1%
decrease in RMSE, when we use squared returns as a
benchmark. However, use of the true volatility as a
benchmark shows that the real improvement of the
RGARCH in comparison to the standard GARCH
model is much larger, around 20%.

In fact, the MSE between the forecasted volatility

ð bσ2Þ and a noisy volatility proxy ðσ2noisyÞ can be

rewritten in the following way:

MSE bσ2; σ2noisy
� �

¼ MSE bσ2; σ2true
� �

þMSEðσ2true; σ2noisyÞ; (28)

where σ2true is the true volatility. This means that part
of the MSE is due to the model imperfection (first
term) and second part is due to the noisiness of the
volatility proxy. When squared returns are used as a
benchmark, then the second term typically domi-
nates and it is therefore difficult to choose between
competing volatility models based on the MSE
(RMSE).

To understand when the RGARCH model provides
the largest improvement over GARCH model
(Hypothesis 3), let us look at Table 11. As we can
see, the larger the day-to-day changes in volatility, the
larger the improvement of the RGARCH model (rela-
tively to the GARCH model). The decrease in RMSE
(with the true volatility as a benchmark) when we use
RGARCH instead of GARCH is 6–9% in case of small
day-to-day changes in volatility, 16–22% for moderate
changes in volatility and 23–24% for large changes in
volatility. This confirms our Hypothesis 3.

IV. Summary

We demonstrate that a simple way of incorporating
range, the intraday difference between the highest
and the lowest price, into the standard GARCH
framework of volatility models results in superior
empirical performance. We illustrate the method by
modifying a GARCH(1,1) model to a range-GARCH
(1,1) model. Empirical tests performed on 30 stocks,
6 stock indices and simulated data show that the
range-GARCH model out performs the standard
GARCH model, both in terms of in-sample fit and
out-of-sample forecasting.

The intuition of this result is the following. The
range-GARCH model not only replaces squared
returns by a more precise volatility proxy in the
form of range, but it also puts more importance of
the most recent volatility estimate and therefore per-
forms particularly well when the level of volatility
changes quickly. This is a desirable feature, because
volatility forecasting is especially important in situa-
tions of rapidly changing volatility levels.

Range-GARCH combines the high precision of
range with the simplicity and ease of estimation of
the standard GARCH models. High and low prices
are typically widely available and the model itself
can be easily estimated using standard econo-
metric software. The range-GARCH model pro-
posed in this article should therefore be of
significant interest both to academics and practi-
tioners alike.
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A B S T R A C T

The dynamic conditional correlation (DCC) model by Engle (2002) is one of the most popular
multivariate volatility models. This model is based solely on closing prices. It has been
documented in the literature that the high and low prices of a given day can be used to obtain
an efficient volatility estimation. We therefore suggest a model that incorporates high and low
prices into the DCC framework. We conduct an empirical evaluation of this model on three
datasets: currencies, stocks, and commodity exchange traded funds. Regardless of whether we
consider in-sample fit, covariance forecasts or value-at-risk forecasts, our model outperforms
not only the standard DCC model, but also an alternative range-based DCC model.

1. Introduction

Models that can describe the dynamic properties of two or more asset returns play an important role in financial econometrics.
Multivariate volatility models have been used to understand and predict the temporal dependence in second order moments of asset
returns. These models can explain how covariances change over time and therefore describe temporal dependencies among assets.
Such relations are vital in many financial applications, such as asset pricing, portfolio optimization, risk management, the estimation
of systemic risk in banking, value-at-risk estimation, asset allocation and many others.

One of the most popular multivariate volatility models is the dynamic conditional correlation (DCC) model introduced
independently by Engle (2002) and Tse and Tsui (2002). The latter representation however has attracted considerably less interest
in the literature. The advantages of the DCC model are the positive definiteness of the conditional covariance martices and the
ability to describe time-varying conditional correlations and covariances in a parsimonious way. The parameters of the DCC model
can be estimated in two stages, which makes this approach relatively simple and possible to apply even for very large portfolios.
The DCC model has become extremely popular and has been widely applied and modified (e.g. Heaney and Sriananthakumar, 2012;
Lehkonen and Heimonen, 2014; Bouri et al., 2017; Bernardi and Catania, 2018; Dark, 2018; Karanasos et al., 2018).

Most volatility models are return-based models, i.e. they are estimated on returns, which are calculated based only on closing
prices. Meanwhile, the use of daily low and high prices leads to more accurate estimates and forecasts of variances (see e.g. Chou,
2005; Brandt and Jones, 2006; Lin et al., 2012; Fiszeder and Perczak, 2016; Molnár, 2016) and covariances (see e.g. Chou et al.,
2009; Fiszeder, 2018). Daily low and high prices are almost always available alongside closing prices in financial series. Therefore,
making use of them in volatility models is very important from a practical viewpoint. DCC models formulated with the usage of
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low and high prices have already been proposed in the literature, including the range-based DCC by Chou et al. (2009) and the
range-based regime-switching DCC by Su and Wu (2014). These models, however, are based on modelling the time evolution of
price range and it is not possible to compare them directly with the return-based DCC model. We propose a DCC model constructed
using the Range-GARCH model by Molnár (2016), which is formulated with the usage of low and high prices but also based on
returns calculated from closing prices.

Our contribution is threefold. First, we construct a new specification of the DCC model based on the Range-GARCH model by
Molnár (2016), which we refer to as the DCC-Range-GARCH model (denoted by DCC-RGARCH). The model itself is very similar to
the DCC model by Engle (2002). Squared errors in the univariate GARCH model are replaced by the Parkinson (1980) volatility
estimator, but the parametrization of the covariance matrix remains the same. Second, we show using low and high prices in the
formulation of the DCC model improves the estimation of the covariance matrix of returns and increases the accuracy of covariance
and VaR forecasts based on this model, compared with the standard DCC model based on closing prices. Since both models, DCC
and DCC-RGARCH, share the same structure in the correlation component, achieving more precise volatility estimates improves the
covariance forecasts. Third, we demonstrate that covariance forecasts based on our proposed model are more accurate than those
obtained using the range-based DCC model by Chou et al. (2009). That is an important conclusion, because the range-based DCC
model is also formulated using low and high prices and is the main competitor for the DCC-RGARCH model in this class of models.

The rest of the paper is organized in the following way. Section 2 provides a description of applied models and methods. Section 3
presents data: three currency pairs -EUR/USD, USD/JPY and GBP/USD, three commodity exchange traded funds (ETFs) - United
States Oil Fund, United States Natural Gas Fund and Energy Select Sector SPDR Fund and five U.S. stocks - Amazon, Apple, Goldman
Sachs, Google and IBM. In Section 4.1 the parameters of the return-based DCC, range-based DCC and DCC-RGARCH models are
estimated and compared. Section 4.2 evaluates the forecasts of the variance of returns from the GARCH, CARR and RGARCH models.
In Section 4.3 the accuracy of covariance forecasts based on the DCC-GARCH and DCC-CARR models is compared with the forecasts
from the DCC-RGARCH model. Section 4.4 evaluates the VaR forecasts based on all considered DCC models. Section 5 concludes.

2. Theoretical background

2.1. The DCC-GARCH model

In this paper we extend the DCC model by Engle (2002) by introducing the range (the difference between low and high prices)
to the model. First, we present the standard DCC model based on closing prices. In order to better distinguish this model from its
competitors used in the paper, which are based on different univariate models, we will refer to it as the DCC-GARCH model.

Let us assume that ϵ𝑡 (𝑁 × 1 vector) is the innovation process for the conditional mean (or in a particular case the multivariate
return process) and can be written as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐜𝐨𝐯𝑡), (1)

where 𝜓𝑡−1 is the set of all information available at time 𝑡− 1, Normal is the multivariate normal distribution and 𝐜𝐨𝐯𝑡 is the 𝑁 ×𝑁
symmetric conditional covariance matrix.

The DCC(𝑃 ,𝑄)-GARCH(𝑝, 𝑞) model by Engle (2002) can be presented as:

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (2)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (3)

𝐐𝑡 =

(
1 −

𝑄∑
𝑖=1

𝜁𝑖 −
𝑃∑
𝑗=1

𝜃𝑗

)
𝐒 +

𝑄∑
𝑖=1

𝜁𝑖(𝐳𝑡−𝑖𝐳′𝑡−𝑖) +
𝑃∑
𝑗=1

𝜃𝑗𝐐𝑡−𝑗 , (4)

where 𝐃𝑡 = diag(ℎ1∕21𝑡 , ℎ
1∕2
2𝑡 … , ℎ1∕2𝑁𝑡 ), conditional variances ℎ𝑘𝑡 (for 𝑘 = 1, 2,… , 𝑁) are described as univariate GARCH models

(Eqs. (5)–(6)), 𝐳𝑡 is the standardized 𝑁 ×1 residual vector assumed to be serially independently distributed given as 𝐳𝑡 = 𝐃−1
𝑡 ε𝑡, 𝐜𝐨𝐫𝑡

is the time varying 𝑁 ×𝑁 conditional correlation matrix of 𝐳𝑡, 𝐒 is the unconditional 𝑁 ×𝑁 covariance matrix of 𝐳𝑡 (according to
Engle, 2002) and 𝐐∗

𝑡 is the diagonal 𝑁 ×𝑁 matrix composed of the square root of the diagonal elements of 𝐐𝑡. The parameters 𝜁𝑖
(for 𝑖 = 1, 2,… , 𝑄), 𝜃𝑗(for 𝑗 = 1, 2,… , 𝑃 ) are nonnegative and satisfy the condition ∑𝑄

𝑖=1 𝜁𝑖 +
∑𝑃
𝑗=1 𝜃𝑗 < 1.

The univariate GARCH(𝑝, 𝑞) model applied in the DCC-GARCH model can be written as:

𝜀𝑘𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, ℎ𝑘𝑡), 𝑘 = 1, 2,… , 𝑁, (5)

ℎ𝑘𝑡 = 𝛼𝑘0 +
𝑞∑
𝑖=1

𝛼𝑘𝑖𝜀
2
𝑘 𝑡−𝑖 +

𝑝∑
𝑗=1

𝛽𝑘𝑗ℎ𝑘 𝑡−𝑗 , (6)

where 𝛼𝑘0 > 0, 𝛼𝑘𝑖 ≥ 0, 𝛽𝑘𝑗 ≥ 0 (for 𝑘 = 1, 2,… , 𝑁 ; 𝑖 = 1, 2,… , 𝑞; 𝑗 = 1, 2,… , 𝑝), weaker conditions for non-negativity of the conditional
variance can be assumed (see Nelson and Cao, 1992). The requirement for covariance stationarity of 𝜀𝑘𝑡 is ∑𝑞

𝑖=1 𝛼𝑘𝑖 +
∑𝑝
𝑗=1 𝛽𝑘𝑗 < 1.

A nice feature of the DCC-GARCH model is that its parameters can be estimated by the quasi-maximum likelihood method using
a two-stage approach (see Engle and Sheppard, 2001). Let the parameters of the model Θ be written in two groups Θ′ = (Θ′

1,Θ′
2),
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where Θ1 is the vector of parameters of conditional means and variances and Θ2 is the vector of parameters of the correlation part
of the model. The log-likelihood function can be written as the sum of two parts:

𝐿(Θ) = 𝐿𝑉 𝑜𝑙(Θ1) + 𝐿𝐶𝑜𝑟𝑟(Θ2||Θ1), (7)

where 𝐿𝑉 𝑜𝑙(Θ1) represents the volatility part:

𝐿𝑉 𝑜𝑙(Θ1) = −1
2

𝑛∑
𝑡=1

(
𝑁 ln(2𝜋) + 𝑙𝑛 ||𝐃𝑡||2 + ε′𝑡𝐃−2

𝑡 ε𝑡
)
, (8)

while 𝐿𝐶𝑜𝑟𝑟(Θ2||Θ1) can be viewed as the correlation component:

𝐿𝐶𝑜𝑟𝑟(Θ2||Θ1) = −1
2

𝑛∑
𝑡=1

(
ln ||𝐜𝐨𝐫𝑡|| + 𝐳′𝑡𝐜𝐨𝐫−1𝑡 𝐳𝑡 − 𝐳′𝑡𝐳𝑡

)
. (9)

𝐿𝑉 𝑜𝑙(Θ1) can be written as the sum of log-likelihood functions of 𝑁 univariate GARCH models:

𝐿𝑉 𝑜𝑙(Θ1) = −1
2

𝑁∑
𝑘=1

(
𝑛 ln(2𝜋) +

𝑛∑
𝑡=1

(
𝑙𝑛(ℎ𝑘𝑡) +

𝜖2𝑘𝑡
ℎ𝑘𝑡

))
. (10)

This means that in the first stage the parameters of univariate GARCH models can be estimated separately for each of the assets
and the estimates of ℎ𝑘𝑡 can be obtained. In the second stage residuals transformed by their estimated standard deviations are used
to estimate the parameters of the correlation part (Θ2) conditioning on the parameters estimated in the first stage (Θ̂1).

2.2. The CARR model

The second benchmark to compare with our new model is the range-based DCC model. This is based on the CARR model by
Chou (2005), which we describe now.

Let assume that 𝐻𝑡 and 𝐿𝑡 are high and low prices over a fixed period such as day, week or month and the observed price range
is given as 𝑅𝑡 = 𝑙𝑛

(
𝐻𝑡

)
− 𝑙𝑛

(
𝐿𝑡

)
. The CARR(𝑝, 𝑞) model can be described as:

𝑅𝑡 = 𝜆𝑡𝑢𝑡, (11)

𝑢𝑡||𝜓𝑡−1 ∼ exp
(
1, 𝜉𝑡

)
, (12)

𝜆𝑡 = 𝛼0 +
𝑞∑
𝑖=1

𝛼𝑖𝑅𝑡−𝑖 +
𝑝∑
𝑗=1

𝛽𝑗𝜆𝑡−𝑗 , (13)

where 𝜆𝑡 is the conditional mean of the range and 𝑢𝑡 is the disturbance term.
The exponential distribution is a natural choice for the conditional distribution of 𝑢𝑡 because it takes positive values. To ensure the
positivity of 𝜆𝑡 the parameters of the CARR model have to meet conditions analogous to those in the GARCH model (see Nelson and
Cao, 1992). The process is covariance stationary if the following condition is met:

𝑞∑
𝑖=1

𝛼𝑖 +
𝑝∑
𝑗=1

𝛽𝑗 < 1. (14)

It is worth emphasizing that the CARR model describes the dynamics of the conditional mean of the price range, not the conditional
variance of returns as in the case of the GARCH model.

The parameters of the CARR model can be estimated by the quasi-maximum likelihood method. The log-likelihood function can
be written as:

𝐿(ς) = −
𝑛∑
𝑡=1

(
ln 𝜆𝑡 +

𝑅𝑡
𝜆𝑡

)
, (15)

where ς is a vector containing unknown parameters of the model. The estimators obtained by the quasi-maximum likelihood method
are consistent (see Engle and Russell, 1998; Engle, 2002; Chou, 2005).

2.3. The DCC-CARR model

In this paper the new DCC-RGARCH model is compared not only with the DCC-GARCH model, formulated on closing prices, but
also with the range-based DCC model which, like the proposed model, is formulated using low and high prices. Chou et al. (2009)
combined the CARR model by Chou (2005) with the DCC model by Engle (2002) to propose the range-based DCC model, which
we refer to as the DCC-CARR model in this paper. The CARR model describes the dynamics of the conditional mean of the price
range, and so in order to estimate values of the conditional standard deviation of returns the conditional price range has to be scaled
according to the formula: 𝜆∗𝑘𝑡 = adj𝑘𝜆𝑘𝑡 for 𝑘 = 1, 2,… , 𝑁 , where adj𝑘 = 𝜎𝑘∕𝜆𝑘. The scaling factor adj𝑘 is estimated as the quotient of
unconditional standard deviation of returns by the sample mean of the conditional range.

The DCC(𝑃 ,𝑄)-CARR(𝑝, 𝑞) model can be expressed as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐜𝐨𝐯𝑡), (16)
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𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (17)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (18)

𝐐𝑡 =

(
1 −

𝑄∑
𝑖=1

𝜁𝑖 −
𝑃∑
𝑗=1

𝜃𝑗

)
𝐒 +

𝑄∑
𝑖=1

𝜁𝑖(𝐳𝐶𝐴𝑅𝑅𝑡−𝑖 (𝐳𝐶𝐴𝑅𝑅𝑡−𝑖 )′) +
𝑃∑
𝑗=1

𝜃𝑗𝐐𝑡−𝑗 , (19)

where 𝐃𝑡 = diag
(
𝜆∗1𝑡, 𝜆

∗
2𝑡,… , 𝜆∗𝑁𝑡

)
, 𝐳𝐶𝐴𝑅𝑅𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized residuals 𝑧CARR

𝑘𝑡
calculated from the CARR model (Eqs. (11)–(13)) as 𝑧CARR

𝑘𝑡 = 𝜀𝑘𝑡∕𝜆∗𝑘𝑡, the other variables are defined in the same way as in the
DCC-GARCH model.

The parameters of the DCC-CARR model can be estimated by the quasi-maximum likelihood method using a two-stage approach.
The log-likelihood function can be written as the sum of two parts, the volatility part and the correlation part:

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅(Θ) = 𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝑉 𝑜𝑙 (Θ1) + 𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝐶𝑜𝑟𝑟 (Θ2||Θ1), (20)

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝑉 𝑜𝑙 (Θ1) = −1
2

𝑁∑
𝑘=1

(
𝑛 ln(2𝜋) +

𝑛∑
𝑡=1

(
2𝑙𝑛(𝜆∗𝑘𝑡) +

𝜖2𝑘𝑡
𝜆∗2𝑘𝑡

))
(21)

𝐿𝐷𝐶𝐶−𝐶𝐴𝑅𝑅𝐶𝑜𝑟𝑟 (Θ2||Θ1) = −1
2

𝑛∑
𝑡=1

(
ln ||𝐜𝐨𝐫𝑡|| + (𝒛𝐶𝐴𝑅𝑅𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝐶𝐴𝑅𝑅𝑡 − (𝒛𝐶𝐴𝑅𝑅𝑡 )′𝒛𝐶𝐴𝑅𝑅𝑡

)
. (22)

This means that in the first stage the parameters of the CARR models can be estimated separately for each of the assets. In the
second stage the standardized residuals 𝑧CARR

𝑘𝑡 are used to maximize Eq. (22) in order to estimate the parameters of the correlation
component.

2.4. The Range-GARCH model

In the new specification of the DCC-RGARCH model we use the Range-GARCH model introduced by Molnár (2016). The
RGARCH(𝑝, 𝑞) model can be formulated as:

𝜀𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, ℎ𝑡), (23)

ℎ𝑡 = 𝛼0 +
𝑞∑
𝑖=1

𝛼𝑖𝜎
2
𝑃 𝑡−𝑖 +

𝑝∑
𝑗=1

𝛽𝑗ℎ𝑡−𝑗 , (24)

where 𝜎2𝑃 𝑡 is the Parkinson (1980) estimator calculated as 𝜎2𝑃 𝑡 = [𝑙𝑛(𝐻𝑡∕𝐿𝑡)]2∕(4 ln 2).
In this formulation other variance estimators based on low, high and opening or closing prices, like the Garman and Klass (1980) or
Rogers and Satchell (1991) estimators, can be applied instead of the Parkinson estimator. For an overview of range-based volatility
estimators see Molnár (2012), Fiszeder and Perczak (2013).

To ensure the positivity of ℎ𝑡 the parameters of the RGARCH model must meet conditions analogous to those in the GARCH
model (see Nelson and Cao, 1992). The RGARCH process is covariance stationary if the following condition is met:

𝑞∑
𝑖=1

𝛼𝑖 +
𝑝∑
𝑗=1

𝛽𝑗 < 1. (25)

It is worth emphasizing that the RGARCH model describes the dynamics of the conditional variance of returns, not the conditional
mean of the price range, as in the case of the CARR model. The parameters of the RGARCH model can be estimated by the
quasi-maximum likelihood method and the likelihood function is the same as in the return-based GARCH model.

2.5. The DCC-Range-GARCH model

In this subsection we introduce our new DCC-Range-GARCH model (denoted by DCC-RGARCH). The DCC(𝑃 ,𝑄)-RGARCH(𝑝, 𝑞)
model can be presented as:

ε𝑡||𝜓𝑡−1 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝐜𝐨𝐯𝑡), (26)

𝐜𝐨𝐯𝑡 = 𝐃𝑡𝐜𝐨𝐫𝑡𝐃𝑡, (27)

𝐜𝐨𝐫𝑡 = 𝐐∗−1
𝑡 𝐐𝑡𝐐∗−1

𝑡 , (28)

𝐐𝑡 =

(
1 −

𝑄∑
𝑖=1

𝜁𝑖 −
𝑃∑
𝑗=1

𝜃𝑗

)
𝐒 +

𝑄∑
𝑖=1

𝜁𝑖(𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 (𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡−𝑖 )′) +
𝑃∑
𝑗=1

𝜃𝑗𝐐𝑡−𝑗 , (29)
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where 𝐃𝑡 = diag
(
(ℎ𝑅𝐺𝐴𝑅𝐶𝐻1𝑡 )1∕2, (ℎ𝑅𝐺𝐴𝑅𝐶𝐻2𝑡 )1∕2 … , (ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑁𝑡 )1∕2

)
, conditional variances ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡 (for 𝑘 = 1, 2,… , 𝑁) are described

as for the RGARCH model (Eqs. (23)–(24)), 𝐳𝑅𝐺𝐴𝑅𝐶𝐻𝑡 is the standardized 𝑁 × 1 residual vector which contains the standardized
residuals 𝑧RGARCH

𝑘𝑡 calculated from the RGARCH model as 𝑧RGARCH
𝑘𝑡 = 𝜀𝑘𝑡∕

(
ℎ𝑅𝐺𝐴𝑅𝐶𝐻𝑘𝑡

)1∕2, the other variables are defined in the same
way as in the DCC-GARCH model.

The parameters of the DCC-R-GARCH model can be estimated by the quasi-maximum likelihood method using a two-stage
approach. The log-likelihood function can be written as the sum of two parts, the volatility part and the correlation part:

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻 (Θ) = 𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝑉 𝑜𝑙 (Θ1) + 𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝐶𝑜𝑟𝑟 (Θ2||Θ1), (30)

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝑉 𝑜𝑙 (Θ1) = −1
2

𝑁∑
𝑘=1

(
𝑛 ln(2𝜋) +

𝑛∑
𝑡=1

(
𝑙𝑛(ℎ𝑘𝑡) +

𝜖2𝑘𝑡
ℎ𝑘𝑡

))
(31)

𝐿𝐷𝐶𝐶−𝑅𝐺𝐴𝑅𝐶𝐻𝐶𝑜𝑟𝑟 (Θ2||Θ1) = −1
2

𝑛∑
𝑡=1

(
ln ||𝐜𝐨𝐫𝑡|| + (𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝐜𝐨𝐫−1𝑡 𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡

−(𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡 )′𝒛𝑅𝐺𝐴𝑅𝐶𝐻𝑡
)
, (32)

This means that in the first stage the parameters of univariate RGARCH models can be estimated separately for each of the assets.
In the second stage the standardized residuals 𝑧RGARCH

𝑘𝑡 are used to maximize Eq. (32) in order to estimate the parameters of the
correlation component.

3. Data

We apply the proposed model and its competitors to three different sets of data: three currency rates, three commodity exchange
traded funds and five stocks. The currency rates are the three most heavily traded currency pairs in the Forex market, namely:
EUR/USD, USD/JPY and GBP/USD.

The second set are three exchange-traded funds (ETF) listed on the New York Stock Exchange Arca, namely (the names given in
the brackets will be used later in tables): the United States Oil Fund (Oil), the United States Natural Gas Fund (Natural Gas) and the
Energy Select Sector SPDR Fund (Energy). Commodity exchange traded funds provide investors with the convenience of commodity
exposure without a commodity futures account. The first two ETFs offer exposure to a single commodity (oil/gas), whereas the third
ETF tracks the price and performance of the Standard and Poor’s Energy Select Sector Index.

The third set of data consists of five selected U.S. stocks, namely: Amazon, Apple, Goldman Sachs, Google and IBM. Since there
are many stocks that could be chosen for this purpose, we decided to follow CBOE and select the stocks for which CBOE calculates
implied volatility indices (even though implied volatility indices are not used in this paper).

We evaluate the models considered for daily data in the nine-year period from January 2, 2008, to December 30, 2016. This is
a relatively long period, which includes both very volatile periods – the collapse of Lehman Brothers, the worst phase of the global
financial crisis, the European sovereign debt crisis and Brexit – but also tranquil periods with low volatility.

The descriptive statistics for the percentage returns calculated as 𝑟𝑡 = 100 ln(𝑝𝑡∕𝑝𝑡−1), where 𝑝𝑡 is the closing price at time 𝑡,
are presented in Table 1. The means of returns are positive for stocks and the Energy Select Sector SPDR Fund and negative for
currencies and the other ETFs. The standard deviation of returns is significantly lower for currencies. Most distributions of returns
are asymmetric, and all display high leptokurtosis.

4. Results

We consider three DCC models in the analysis:
(1) The DCC-GARCH model by Engle (2002) summarized by Eqs. (1)–(6), where parameters are estimated based only on closing

prices.
(2) The DCC-CARR model by Chou et al. (2009), see Eqs. (16)–(19). In this specification the CARR model (Eqs. (11)–(13)) is

applied in the DCC model instead of the univariate GARCH model.
(3) The proposed DCC-RGARCH model summarized by Eqs. (26)–(29). In this specification the RGARCH model described by

Eqs. (23)–(24) is applied in the DCC model instead of the univariate GARCH model.
We also consider a DCC model using two asymmetric GARCH models, i.e. the EGARCH (Nelson, 1991) and GJR (Glosten et al.,

1993) models, instead of the standard GARCH model. These models are able to capture often-reported asymmetric responses to
positive and negative shocks in the conditional variance. However we find that covariance forecasts based on the DCC-EGARCH
and DCC-GJR models are not significantly better than forecasts from the DCC-GARCH model for any of the currencies and ETFs
considered, or for most stocks (the results are given in Tables A.1 and A.2 in the Appendix), and so we do not extend our models
to describe the effect of asymmetry in variance.

The considered exchange rates, ETFs and stocks are not cointegrated (according to the Johansen test). Mean equations for returns
are very simple: each mean equation is a constant, because in our data the sample return of any asset is not dependent on its own
past returns nor on the past returns of other assets.

We first compare the fit of the models estimated on the whole sample of data, and then compare the forecasts from these
models. We analyse forecasts of variances and forecasts of covariances separately, because models for variances already exist whereas
forecasting covariances is our main contribution.
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Table 1
Summary statistics of daily returns.

Assets Mean × 102 Minimum Maximum Standard deviation Skewness Excess kurtosis

Currency rates

EUR/USD −1.401 −2.554 3.503 0.657 0.116* 4.825*
JPY/USD −0.198 −5.448 3.779 0.692 −0.008 7.670*
GBP/USD −2.037 −8.322 2.870 0.641 −1.245* 17.043*

Exchange-traded funds

Oil −8.234 −11.439 9.199 2.286 −0.133* 5.256*
Natural Gas −15.146 −9.745 13.942 2.651 0.172* 4.173*
Energy 0.463 −19.033 18.051 1.965 −0.408* 15.390*

Stocks

Amazon 9.220 −13.640 23.768 2.482 0.548* 11.837*
Apple 6.631 −19.128 12.577 2.039 −0.499* 10.454*
Goldman Sachs 0.984 −22.022 23.245 2.538 0.054 18.504*
Google 3.658 −10.271 18.231 1.894 0.752* 14.891*
IBM 2.801 −8.799 11.035 1.443 −0.215* 8.928*

The sample period is January 2, 2008, to December 30, 2016.
*Indicates that the null hypothesis (the skewness or excess kurtosis is equal to zero) was rejected at the 10% significance level.

4.1. In-sample comparison of models

The parameters of the considered models are estimated using the quasi-maximum likelihood method. The results of the estimation
are presented in Tables 2–4 separately for exchange rates, ETFs and stocks.

The estimation of parameters for the GARCH, R-GARCH and CARR models is based on different kinds of data: on closing prices
for the first two models1 and on range data for the third model. However, for the DCC-CARR, which uses the CARR model, it is
possible to calculate the likelihood function based on the scaled conditional price range according to formula (21). Thanks to this,
it is possible to evaluate all the DCC models based on the whole likelihood function, including both the volatility and correlation
parts. In order to assess whether the differences between values of likelihood function are statistically significant, we apply the Rivers
and Vuong (2002) and Clarke (2007) tests for non-nested model selection. The values of the likelihood function are higher for the
DCC-RGARCH model than for the benchmark DCC-GARCH model for all analysed data sets, which means that the DCC-RGARCH
model better describes the considered time series. The results for the DCC-CARR model are ambiguous and depend on the type of
test applied.

The application of range data changes the parameter estimates for the considered models significantly. Specifically, the estimates
of the parameters 𝛼𝑘1 are much higher and the estimates of the parameters 𝛽𝑘1 much lower in the CARR and RGARCH models
compared with the GARCH model. This is important in terms of both modelling and forecasting volatility, because for the CARR
and RGARCH models the shocks in the previous period have a stronger impact on the current volatility than the impact you observe
for the GARCH model. Thus models formulated with range data respond more quickly to changing market conditions. Slow response
to abrupt changes in the market is widely cited as one of the greatest weaknesses of GARCH-type models formulated based on closing
prices (e.g. Andersen et al., 2003; Hansen et al., 2012).

Direct comparison of the parameters of the CARR model with the parameters of the GARCH and RGARCH models is, however,
difficult, because they describe different measures of volatility. The CARR model describes the dynamics of the conditional mean
of the price range, while the GARCH and RGARCH models describe the conditional variance of returns.

One can also notice that the sum of the estimates of the parameters 𝛼𝑘1 and 𝛽𝑘1 in the RGARCH model is higher than one for
ETFs and stocks. However, this does not mean that the analysed processes are covariance non-stationary. It results from the fact
that the Parkinson estimator underestimates the volatility of returns in the presence of opening jumps (such jumps do not occur in
the Forex market since it does not close overnight), causing an increase in the estimate of the parameter 𝛼𝑘1 (see Molnár, 2016).

On the other hand, there are no considerable differences between the considered models in the estimates of parameters for the
correlation component. Thus, the main differences in the behaviour of the time-varying covariances from those models results from
the usage of the different standardized residuals 𝑧𝑘𝑡, 𝑧CARR

𝑘𝑡 and 𝑧RGARCH
𝑘𝑡 in Eqs. (4), (19) and (29) of the DCC-GARCH, DCC-CARR

and DCC-RGARCH models, respectively.

4.2. Comparison of variance forecasts

In this section we compare the forecasting performance of the three univariate models, which are used in the DCC models. We
formulate out-of-sample one-day-ahead forecasts of variance based on the GARCH, CARR and RGARCH models, where parameters
are estimated separately each day based on a rolling sample of a fixed size of 500 (approximately a two-year period; the first

1 In the R-GARCH model, the Parkinson estimator with the high-low range is used as an explanatory variable but the likelihood function is formulated based
on closing prices.
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Table 2
Results of parameter estimation for currency rates.

Parameter DCC-GARCH DCC-CARR DCC-RGARCH

Estimate Std. error Estimate Std. error Estimate Std. error

𝛾10 −0.011 0.011 – – −0.019 0.011
𝛼10 0.001 0.001 0.007 0.003 0.002 0.002
𝛼11 0.037 0.006 0.093 0.012 0.052 0.013
𝛽11 0.960 0.006 0.901 0.013 0.943 0.015
𝛾20 −0.015 0.013 – – −0.005 0.012
𝛼20 0.006 0.004 0.019 0.007 0.010 0.006
𝛼21 0.055 0.019 0.134 0.023 0.133 0.040
𝛽21 0.933 0.024 0.847 0.029 0.843 0.046
𝛾30 −0.009 0.011 – – −0.016 0.010
𝛼30 0.003 0.002 0.006 0.003 0.004 0.002
𝛼31 0.076 0.030 0.110 0.014 0.116 0.049
𝛽31 0.921 0.026 0.883 0.014 0.871 0.041
𝜁1 0.044 0.006 0.048 0.007 0.044 0.006
𝜃1 0.922 0.011 0.923 0.012 0.921 0.011

ln L −5694.139 −5649.297 −5648.297
Rivers–Vuong – 2.796 (0.003) 2.563 (0.005)
Clarke – −2.028 (0.979) 6.414 (0.000)

The sample period is January 2, 2008, to December 30, 2016, the parameters 𝛾10, 𝛾20, 𝛾30 are constants, 𝛼k0 𝛼k1
𝛽k1 are the parameters of the univariate GARCH model (Eq. (6)), the CARR model (Eq. (13)) and the RGARCH
model (Eq. (24)), 𝑘 = 1, 2, 3 for EUR/USD, JPY/USD and GBP/USD, respectively, 𝜁1, 𝜃1 are the parameters of the
correlation part (Eqs. (4), (19) and (29) for the DCC-GARCH, DCC-CARR and DCC-RGARCH models, respectively),
ln L is the logarithm of the likelihood function, the Rivers–Vuong and Clarke are test statistics for model selection,
where comparisons are made with the DCC-GARCH model, p-values are given in brackets. A low p-value means
that the indicated model is superior to the benchmark DCC-GARCH model.

Table 3
Results of parameter estimation for exchange-traded funds.

Parameter DCC-GARCH DCC-CARR DCC-RGARCH

Estimate Std. error Estimate Std. error Estimate Std. error

𝛾10 −0.127 0.051 – – −0.127 0.051
𝛼10 0.090 0.034 0.049 0.015 0.111 0.052
𝛼11 0.056 0.009 0.096 0.011 0.154 0.026
𝛽11 0.932 0.011 0.887 0.014 0.897 0.018
𝛾20 −0.017 0.036 – – −0.055 0.035
𝛼20 0.020 0.011 0.017 0.007 0.031 0.022
𝛼21 0.065 0.014 0.140 0.017 0.236 0.069
𝛽21 0.933 0.014 0.854 0.019 0.864 0.039
𝛾30 0.058 0.026 – – 0.016 0.026
𝛼30 0.024 0.009 0.048 0.013 0.019 0.016
𝛼31 0.090 0.015 0.256 0.023 0.382 0.075
𝛽31 0.904 0.015 0.719 0.026 0.748 0.047
𝜁1 0.014 0.003 0.017 0.003 0.013 0.003
𝜃1 0.980 0.004 0.980 0.004 0.982 0.005

ln L −13 419.952 −13 445.131 −13 358.665
Rivers-Vuong – −0.553 (0.710) 3.143 (0.001)
Clarke – −11.344 (1.000) 4.117 (0.000)

The sample period is January 2, 2008, to December 30, 2016, the parameters 𝛾10, 𝛾20, 𝛾30 are constants, 𝛼k0 𝛼k1 𝛽k1
are the parameters of the univariate GARCH model (Eq. (6)), the CARR model (Eq. (13)) and the RGARCH model
(Eq. (24)), 𝑘 = 1, 2, 3 for Natural Gas, Oil and Energy, respectively, 𝜁1, 𝜃1 are the parameters of the correlation
part (Eqs. (4), (19) and (29) for the DCC-GARCH, DCC-CARR and DCC-RGARCH models, respectively). Ln L is the
logarithm of the likelihood function, the Rivers–Vuong and Clarke are test statistics for model selection, where
comparisons are made with the DCC-GARCH model, p-values are given in brackets. A low p-value means that
the indicated model is superior to the benchmark DCC-GARCH model.

in-sample period is from January 2, 2008 to December 31, 2009). We evaluate forecasts for the seven-year period from January 4,
2010, to December 30, 2016.

The sum of squares of 15-min returns (the realized variance) is used as a proxy of the daily variance. The forecasts from the
models are evaluated based on two primary measures, namely, the mean squared error (MSE) and the mean absolute error (MAE).
In order to evaluate the statistical significance of the results the Diebold–Mariano test (Diebold and Mariano, 1995) corrected for
small-sample bias (Harvey et al., 1997) is applied.

A pairwise comparison is performed and the results for the RGARCH model are presented with respect to the two benchmarks:
first the GARCH model and second the CARR model. The GARCH and CARR models are the most popular univariate volatility
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Table 4
Results of parameter estimation for stocks.

Parameter DCC-GARCH DCC-CARR DCC-RGARCH

Estimate Std. error Estimate Std. error Estimate Std. error

𝛾10 0.118 0.045 – – 0.119 0.043
𝛼10 0.023 0.039 0.057 0.019 0.400 0.138
𝛼11 0.014 0.010 0.187 0.024 0.396 0.087
𝛽11 0.982 0.016 0.793 0.028 0.684 0.071
𝛾20 0.155 0.038 – – 0.086 0.034
𝛼20 0.132 0.042 0.128 0.035 0.189 0.069
𝛼21 0.098 0.024 0.264 0.038 0.250 0.055
𝛽21 0.868 0.027 0.679 0.051 0.783 0.046
𝛾30 0.053 0.037 – – 0.029 0.033
𝛼30 0.062 0.047 0.064 0.017 0.063 0.036
𝛼31 0.115 0.063 0.241 0.030 0.243 0.054
𝛽31 0.879 0.062 0.734 0.034 0.821 0.037
𝛾40 0.055 0.035 – – 0.057 0.032
𝛼40 0.127 0.085 0.081 0.018 0.339 0.140
𝛼41 0.083 0.060 0.240 0.025 0.595 0.193
𝛽41 0.885 0.070 0.720 0.031 0.556 0.143
𝛾50 0.036 0.026 – – 0.019 0.024
𝛼50 0.126 0.041 0.061 0.032 0.134 0.033
𝛼51 0.124 0.037 0.221 0.048 0.404 0.065
𝛽51 0.814 0.046 0.741 0.058 0.663 0.049
𝜁1 0.003 0.001 0.006 0.002 0.003 0.000
𝜃1 0.993 0.003 0.989 0.004 0.991 0.001

ln L −21 205.733 −21 055.408 −20 920.942
Rivers-Vuong – 2.538 (0.006) 4.910 (0.000)
Clarke – −3.255 (0.999) 12.497 (0.000)

The sample period is January 2, 2008, to December 30, 2016, the parameters 𝛾10, 𝛾20, 𝛾30 are constants, 𝛼k0 𝛼k1
𝛽k1 are the parameters of the univariate GARCH model (Eq. (6)), the CARR model (Eq. (13)) and the RGARCH
model (Eq. (24)), 𝑘 = 1, 2, 3, 4, 5 for Amazon, Apple, Goldman Sachs, Google and IBM, respectively, 𝜁1, 𝜃1 are the
parameters of the correlation part (Eqs. (4), (19) and (29) for the DCC-GARCH, DCC-CARR and DCC-RGARCH
models, respectively), ln L is the logarithm of the likelihood function, the Rivers–Vuong and Clarke are test
statistics for model selection, where comparisons are made with the DCC-GARCH model, p-values are given in
brackets. A low p-value means that the indicated model is superior to the benchmark DCC-GARCH model.

models formulated based on returns constructed on closing prices and price range, respectively. The forecasting performance results
are presented in Tables 5 and 6 for the MSE and MAE criteria, respectively.

According to the MSE criterion, the forecasts of variance from the RGARCH model are more accurate for currencies and the
Energy Select Sector SPDR Fund. For the other ETFs and stocks, the results are mixed. However, there are large outliers in the
data set, which affect the MSE measure. Such outliers are present for ETFs and stocks (see e.g. minimum and maximum returns
in Table 1). A quite different picture emerges from the MAE criterion. According to this measure the best forecasts are formulated
based on the RGARCH (except Amazon and Apple stocks) and, in almost all cases, the higher forecasting accuracy of this model is
statistically significant at the 10% significance level (the exceptions are the GBP/USD currency pair and Google’s stock with respect
to the CARR benchmark model). The CARR and RGARCH models’ forecasting superiority over the GARCH model has already been
documented by Chou (2005) and Molnár (2016), respectively. Higher forecast accuracy based on the RGARCH model in comparison
to the CARR model has not previously been demonstrated in the literature.

In order to check the robustness of the results, we also consider 5-min returns instead of 15-min returns and three additional
evaluation measures (the coefficient of determination, the logarithmic loss function and the linear exponential loss function). The
results for the MSE and MAE criteria for 5-min returns are presented in Table A.3 in Appendix. The conclusions are very similar
to those presented for 15-min returns.

The first additional measure is the coefficient of determination from the Mincer–Zarnowitz regression. A proxy of volatility is
regressed on a constant and the forecast of volatility. It is a very simple and popular way to evaluate the forecasting performance
of volatility models (see e.g. Poon and Granger, 2003). The values of the coefficient of determination for the competing models are
presented in Table 7. These results are in accordance with those for the MSE measure.

To reduce the impact of outliers, we also use the logarithmic loss function. This is calculated similarly to the MSE measure,
but the logarithm of a volatility proxy and the logarithm of the volatility forecast are applied (see Pagan and Schwert, 1990). The
estimates of the logarithmic loss function are given in Table 8. These results are very similar to those for the MAE criterion and
indicate that the forecasts from the RGARCH model are superior.

Additionally, we apply a linear exponential loss function (LINEX). For the positive coefficient 𝑎 of the LINEX, the function is
approximately linear for over-prediction errors and exponential for under-prediction errors. This means that under-prediction errors
have a higher impact on the loss function than over-prediction errors. For the negative coefficient 𝑎 the situation is exactly the
opposite. The values of the LINEX function for 𝑎 = −1 and 𝑎 = 1 are presented in the Appendix in Tables A.4 and A.5 respectively.
The results for all currency rates indicate that the variance forecasts based on the RGARCH model are more accurate than the
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Table 5
Evaluation of variance forecasts: the MSE criterion.

Assets GARCH CARR RGARCH GARCH vs. RGARCH CARR vs. RGARCH

MSE P-value of DM test

Currency rates

EUR/USD 0.112 0.120 0.098 0.010 0.004
GBP/USD 0.811 1.134 0.560 0.062 0.197
JPY/USD 0.426 0.485 0.330 0.022 0.049

Exchange-traded funds

Energy 9.133 9.493 7.558 0.019 0.004
Oil 14.049 19.470 15.005 0.973 0.000
Natural Gas 22.402 26.507 23.383 0.960 0.000

Stocks

Amazon 164.230 183.148 181.768 0.978 0.313
Apple 122.262 94.508 98.246 0.177 0.857
Goldman Sachs 11.917 11.986 11.365 0.264 0.172
Google 50.899 58.700 58.730 0.760 0.521
IBM 11.586 13.727 13.208 0.834 0.069

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and estimated
as the sum of squares of 15-min returns. The lowest values of MSE are marked in bold. The p-values of the Diebold–Mariano
test are presented for pairs of models with respect to the two benchmarks: the GARCH and CARR models. A p-value lower than
the significance level means that the forecasts of variance from the RGARCH model are more accurate than the forecasts from
a benchmark model (here GARCH or CARR).

Table 6
Evaluation of variance forecasts: the MAE criterion.

Assets GARCH CARR RGARCH GARCH vs. RGARCH CARR vs. RGARCH

MAE P-value of DM test

Currency rates

EUR/USD 0.166 0.169 0.155 0.000 0.000
GBP/USD 0.167 0.161 0.147 0.000 0.165
JPY/USD 0.230 0.228 0.206 0.000 0.000

Exchange-traded funds

Energy 1.190 1.292 1.040 0.000 0.000
Oil 2.213 2.485 2.137 0.002 0.000
Natural Gas 3.233 3.527 3.198 0.095 0.000

Stocks

Amazon 3.704 3.265 3.322 0.000 0.974
Apple 2.410 2.220 2.263 0.011 0.915
Goldman Sachs 1.752 1.854 1.682 0.015 0.000
Google 2.001 1.861 1.844 0.013 0.172
IBM 1.064 1.043 1.007 0.003 0.000

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of
variance and estimated as the sum of squares of 15-min returns. The lowest values of MAE are marked in bold.
The p-values of the Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks:
the GARCH and CARR models. A p-value lower than the significance level means that the forecasts of variance
from the RGARCH model are more accurate than the forecasts from a benchmark model (here GARCH or CARR).

forecasts from the competing models. The outcomes for other assets are ambiguous, but they depend heavily on outliers. When the
highest 1% of values are excluded, the values of the LINEX loss function are much smaller and more often indicate the RGARCH
model as the best forecasting model.

4.3. Comparison of covariance forecasts

In this section, we compare out-of-sample one-day-ahead forecasts of covariance from the DCC-GARCH and DCC-CARR models
with the forecasts from the DCC-RGARCH model. We use the same estimation and forecasting samples as for variances in Section 4.2.
The sum of products of 15-min returns (the realized covariance) is employed as a proxy of the daily covariance for the evaluation
of the forecasts. We use the same evaluation measures as in the previous section. We perform a pairwise comparison by the
Diebold–Mariano test for the DCC-RGARCH model with respect to the two benchmarks: first the DCC-GARCH model and second the
DCC-CARR model.

The forecasting performance results for the covariance of returns are presented in Tables 9 and 10 for the MSE and MAE criteria,
respectively. For all analysed relations except the one between the United States Oil and United States Natural Gas Funds based
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Table 7
Evaluation of variance forecasts: the coefficient of determination.

Assets GARCH CARR RGARCH

Currency rates

EUR/USD 0.254 0.217 0.355
GBP/USD 0.305 0.034 0.513
JPY/USD 0.200 0.080 0.417

Exchange-traded funds

Energy 0.318 0.290 0.453
Oil 0.405 0.315 0.372
Natural Gas 0.253 0.138 0.216

Stocks

Amazon 0.307 0.084 0.100
Apple 0.089 0.395 0.302
Goldman Sachs 0.380 0.390 0.391
Google 0.244 0.141 0.149
IBM 0.378 0.128 0.154

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used
as a proxy of variance and estimated as the sum of squares of 15-min returns. The highest values
of 𝑅2 are marked in bold.

Table 8
Evaluation of variance forecasts: the logarithmic loss function.

Assets GARCH CARR RGARCH

Currency rates

EUR/USD 0.326 0.332 0.294
GBP/USD 0.249 0.262 0.208
JPY/USD 0.487 0.479 0.404

Exchange-traded funds

Energy 0.485 0.552 0.357
Oil 0.617 0.631 0.532
Natural Gas 0.561 0.641 0.546

Stocks

Amazon 1.039 0.750 0.770
Apple 0.974 0.815 0.867
Goldman Sachs 0.594 0.605 0.557
Google 0.883 0.723 0.742
IBM 0.735 0.681 0.628

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used
as a proxy of variance and estimated as the sum of squares of 15-min returns. The lowest values
of the logarithmic loss function are marked in bold.

on the MSE measure, the lowest values of loss functions are found for the DCC-RGARCH model. In most cases, this model’s higher
forecasting accuracy is statistically significant.2 In the MAE measure less weight is assigned to outliers and the results for this measure
clearly indicate that the DCC-RGARCH model is the best forecasting model.

The forecasts formulated based on the DCC-RGARCH are more precise than the forecasts from both the benchmark models.
The first benchmark, DCC-GARCH, is based on returns formulated on the closing prices. This result shows that the application of
range data in the standard univariate GARCH model increases the accuracy of covariance forecasts based on the DCC model. The
second benchmark, DCC-CARR, is based on range data. This means that the way in which range data is utilized in the univariate
volatility model is decisive in determining the forecasting accuracy of the DCC model. Since both benchmarks, i.e. the DCC-GARCH
and DCC-CARR models, share the same structure in the correlation component as the DCC-RGARCH model, our results clearly show
that more precise volatility estimates improve covariance forecasts.

The DCC-CARR model, which can be treated as the main benchmark model for models constructed based on range data, was
not only inferior to the DCC-RGARCH model for most assets, but also inferior to the DCC-GARCH model for currencies and ETFs.

To check the robustness of the results, we also consider 5-min returns instead of 15-min returns and two other loss functions (the
coefficient of determination and the LINEX loss function). The results for the MSE and MAE criteria for 5-min returns are presented
in Table A.6 in Appendix. The outcomes are very similar to those presented for 15-min returns.

2 Under the MSE criterion the difference between the loss function of the DCC-RGARCH model and the benchmark model is not statistically significant
for EUR/USD-GBP/USD, JPY/USD-GBP/USD, Apple-IBM (with both benchmark models), Oil-Energy (with the DCC-GARCH benchmark) and Amazon-Apple,
Amazon-Goldman Sachs, Apple-Google (with the DCC-CARR benchmark). Under the MAE measure there are only two relations for which there is no evidence
to reject the null hypothesis of equal predictive ability. These are JPY/USD-GBP/USD (with both benchmark models) and Amazon-Apple (with the DCC-CARR
benchmark).
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Table 9
Evaluation of covariance forecasts: the MSE criterion.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

MSE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.654 0.748 0.561 0.044 0.044
EUR/USD-GBP/USD 0.698 0.941 0.508 0.149 0.167
JPY/USD-GBP/USD 1.334 2.075 1.016 0.233 0.193

Exchange-traded funds

Oil-Natural Gas 62.800 64.876 63.108 0.750 0.000
Oil-Energy 61.59 103.049 60.347 0.182 0.000
Natural Gas-Energy 30.734 81.546 30.230 0.036 0.000

Stocks

Amazon-Apple 198.390 191.357 172.797 0.038 0.109
Amazon-Goldman Sachs 70.799 73.782 70.702 0.008 0.186
Amazon-Google 169.973 160.102 148.522 0.001 0.088
Amazon-IBM 48.763 45.834 42.501 0.005 0.088
Apple-Goldman Sachs 99.443 99.274 87.165 0.023 0.048
Apple-Google 268.149 265.364 227.639 0.097 0.113
Apple-IBM 148.476 145.042 114.888 0.122 0.145
Goldman Sachs-Google 66.727 63.389 56.076 0.000 0.032
Goldman Sachs-IBM 41.518 40.048 36.398 0.000 0.006
Google-IBM 56.165 53.489 47.270 0.021 0.076

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance
and estimated as the sum of products of 15-min returns. The lowest values of MSE are marked in bold. The p-values of the
Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks: the DCC-GARCH and DCC-CARR
models. A p-value lower than the significance level means that the forecasts of covariance from the DCC-RGARCH model are
more accurate than the forecasts from a benchmark model (here DCC-GARCH or DCC-CARR).

Table 10
Evaluation of covariance forecasts: the MAE criterion.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

MAE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.106 0.112 0.104 0.002 0.000
EUR/USD-GBP/USD 0.098 0.099 0.092 0.000 0.006
JPY/USD-GBP/USD 0.088 0.092 0.086 0.166 0.120

Exchange-traded funds

Oil-Natural Gas 1.453 1.478 1.446 0.028 0.000
Oil-Energy 1.291 1.494 1.204 0.000 0.000
Natural Gas-Energy 1.046 1.997 1.024 0.000 0.000

Stocks

Amazon-Apple 1.299 1.157 1.142 0.000 0.103
Amazon-Goldman Sachs 1.210 1.134 1.106 0.000 0.001
Amazon-Google 1.506 1.299 1.255 0.000 0.001
Amazon-IBM 0.875 0.793 0.765 0.000 0.000
Apple-Goldman Sachs 1.060 1.037 0.978 0.000 0.000
Apple-Google 1.157 1.065 1.015 0.000 0.000
Apple-IBM 0.820 0.767 0.716 0.000 0.000
Goldman Sachs-Google 1.093 1.050 0.971 0.000 0.000
Goldman Sachs-IBM 0.841 0.813 0.752 0.000 0.000
Google-IBM 0.743 0.689 0.651 0.000 0.000

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance
and estimated as the sum of products of 15-min returns. The lowest values of MAE are marked in bold. The p-values of the
Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks: the DCC-GARCH and DCC-CARR
models. A p-value lower than the significance level means that the forecasts of covariance from the DCC-RGARCH model are
more accurate than the forecasts from a benchmark model (here DCC-GARCH or DCC-CARR).

Table 11 presents the coefficient of determination values from the Mincer–Zarnowitz regression. A proxy of covariance is
regressed on a constant and the forecast of covariance. We are unable to calculate the logarithmic loss function (see Section 4.2)
because some covariances are negative.
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Table 11
Evaluation of covariance forecasts: the coefficient of determination.

Assets DCC-GARCH DCC-CARR DCC-RGARCH

Currency rates

EUR/USD-JPY/USD 0.224 0.098 0.364
EUR/USD-GBP/USD 0.320 0.097 0.513
JPY/USD-GBP/USD 0.370 0.016 0.507

Exchange-traded funds

Oil-Natural Gas 0.023 0.005 0.016
Oil-Energy 0.373 0.083 0.392
Natural Gas-Energy 0.029 0.012 0.031

Stocks

Amazon-Apple 0.033 0.070 0.215
Amazon-Goldman Sachs 0.054 0.103 0.154
Amazon-Google 0.050 0.115 0.256
Amazon-IBM 0.049 0.116 0.251
Apple-Goldman Sachs 0.070 0.076 0.208
Apple-Google 0.045 0.050 0.279
Apple-IBM 0.025 0.047 0.404
Goldman Sachs-Google 0.077 0.122 0.248
Goldman Sachs-IBM 0.084 0.119 0.250
Google-IBM 0.050 0.108 0.327

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance based
on 15-min returns is used as a proxy of covariance. The highest values of 𝑅2 are marked in bold.

For all covariances except the relation between the United States Oil and United States Natural Gas Funds the highest R2 values
are obtained for the DCC-RGARCH model. In most cases the superiority of this model is considerable.

We obtain different results for the asymmetric loss function LINEX. The values of the function for 𝑎 = −1 and 𝑎 = 1 are presented
in the Appendix in Tables A.7 and A.8, respectively. The results for all relations between currencies rates indicate that the covariance
forecasts based on the DCC-RGARCH model are more accurate than the forecasts from the competing DCC models. The outcomes
for other assets are mixed but outliers have considerable influence on the evaluation. After excluding the highest 1% of values
the results depend on the valuation of the over- and under-prediction errors. For 𝑎 = −1, i.e. when over-prediction errors have a
higher impact on the loss function, then the best forecasts are based on the DCC-RGARCH model, whereas for 𝑎 = 1, i.e. when
under-prediction errors have a greater influence on the LINEX, then the DCC-CARR is better according to this criterion.

4.4. Forecasting value-at-risk

Covariance forecasting is crucial for most multivariate financial applications, such as portfolio construction, valuation of assets,
risk management and contagion effect. More accurate covariance forecasts give an advantage in various financial applications. That
is why covariance forecasting, similarly like volatility forecasting, has not only statistical but also economic consequences.

In this subsection we apply the considered DCC models to one such application, namely the evaluation of risk, using the value-
at-risk (VaR) measure. VaR was developed by financial practitioners as an easily interpretable number which encodes information
about a portfolio’s risk. Despite being a single number, VaR enables managers to interpret the cost of risk and allocate capital
efficiently. We formulate daily forecasts of VaR for three separate portfolios of currency rates, commodity exchange traded funds
and stocks. All the portfolios are constructed with equal weights. The same assets and forecasting period are assumed as in the
analysis of variances and covariances in Sections 4.2 and 4.3 We construct VaR forecasts for the 95% and 99% confidence levels.

Our evaluation of the forecasts is based on two approaches: the first involves testing the competing VaR models for statistical
accuracy, while the second pertains to measuring the loss to the economic agent as a result of using the model. We test the statistical
adequacy of the forecasts based on: the unconditional coverage test by Kupiec (1995), the independence and conditional coverage
tests by Christoffersen (1998), and the unconditional coverage, independence and conditional coverage tests by Candelon et al.
(2011). The results of these tests for the 95% VaR forecasts are presented in Table 12 (the outcomes for the 99% confidence level
are given in Table A.9 in the Appendix). The results for the Candelon et al. (2011) tests are presented for 5 moments, but we also
obtained very similar results for 1, 2, 3, 4 and 6 moments.

We do not obtain fully satisfactory results for all portfolios for any of the models, but the outcomes depend heavily on the kind
of assets and tests applied. The statistical test results do not differ sufficiently between the competing models to clearly indicate
which is a better model.

In the second approach, we perform an economic evaluation of the models based on loss functions. We concentrate on firm loss
functions. This approach emphasizes the role of the utility function of risk managers, who have to consider their firms’ profitability,
and therefore prefer smaller scaled VaR measures for efficient capital allocation. In order to assess whether the differences between
loss functions are statistically significant, we apply the Diebold–Mariano test. The results for the 95% VaR forecasts are given in
Table 13 (the outcomes for the 99% confidence level are presented in Table A.10 in the Appendix).
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Table 12
Evaluation of 95% VaR forecasts: unconditional coverage and independence tests.

Statistic DCC-GARCH DCC-CARR DCC-RGARCH

Value P-value Value P-value Value P-value

Currency rates

LRUC 0.549 0.489 0.436 0.509 0.927 0.336
LRIND 1.207 0.272 2.783 0.095 1.019 0.313
LRCC 1.756 0.416 3.219 0.200 1.946 0.378
JUC 0.417 0.532 0.557 0.494 0.772 0.353
JIND 5.049 0.095 0.318 0.929 16.040 0.010
JCC 7.944 0.082 0.736 0.905 37.134 0.010

Exchange-traded funds

LRUC 3.294 0.070 0.000 0.991 0.618 0.432
LRIND 0.368 0.544 0.548 0.459 1.041 0.308
LRCC 3.662 0.160 0.548 0.760 1.660 0.436
JUC 3.288 0.063 0.010 0.924 0.478 0.486
JIND 4.312 0.130 2.181 0.363 5.593 0.075
JCC 10.308 0.048 2.192 0.567 6.879 0.105

Stocks

LRUC 2.202 0.139 20.416 0.000 4.869 0.027
LRIND 0.002 0.968 1.433 0.231 0.251 0.616
LRCC 2.203 0.332 21.850 0.000 5.120 0.077
JUC 2.269 0.139 28.409 0.000 4.590 0.031
JIND 3.307 0.202 69.453 0.002 6.289 0.060
JCC 5.880 0.146 19970.690 0.000 11.226 0.036

The evaluation period is January 4, 2010, to December 30, 2016, LRUC is the statistic for the Kupiec (1995)
unconditional coverage test, LRIND is the statistic for the Christoffersen (1998) independence test, LRCC is the
statistic for the Christoffersen (1998) conditional coverage test, JUC is the statistic for the Candelon et al. (2011)
unconditional coverage test, JIND is the statistic for the Candelon et al. (2011) independence test for up to five
lags, JCC is the statistic for the Candelon et al. (2011) conditional coverage test with the number of moments
fixed to 5, p-values for JUC, JIND, JCC were corrected by Dufour’s (2006) Monte Carlo procedure.

Table 13
Evaluation of 95% VaR forecasts: firm loss functions tests.

Loss function DCC-GARCH DCC-CARR DCC-
RGARCH

DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

Value of loss function × 10 P-value of DM test

Currency rates

FLF(STS) 0.371 0.394 0.369 0.158 0.014
FLF(C1) 5.991 6.091 5.972 0.033 0.000
FLF(C2) 3.079 3.204 3.055 0.127 0.000
FLF(C3) 7.189 7.203 7.161 0.153 0.032

Exchange-traded funds

FLF(STS) 1.500 1.689 1.566 0.975 0.001
FLF(C1) 5.829 5.912 5.804 0.044 0.000
FLF(C2) 9.776 10.144 9.627 0.016 0.000
FLF(C3) 23.725 23.918 22.428 0.001 0.000

Stocks

FLF(STS) 1.533 1.806 1.480 0.077 0.000
FLF(C1) 6.018 6.811 5.956 0.001 0.000
FLF(C2) 7.784 14.668 7.472 0.000 0.000
FLF(C3) 18.911 27.205 18.612 0.003 0.000

The evaluation period is January 4, 2010, to December 30, 2016, FLF(STS) is the loss function by Sarma et al.
(2003), FLF(C1), FLF(C2), FLF(C3) are three loss functions by Caporin (2008). The lowest values of loss functions
are marked in bold. The p-values of the Diebold–Mariano test are presented for pairs of models with respect
to the two benchmarks: the DCC-GARCH and DCC-CARR models. A p-value lower than the significance level
means that economic losses for the DCC-RGARCH model are lower than losses for a benchmark model (here
DCC-GARCH or DCC-CARR).

For most of the considered loss functions, significantly more accurate VaR forecasts are constructed based on the DCC-RGARCH
model than the DCC-GARCH or DCC-CARR models. This means that risk managers should prefer the DCC-RGARCH model for the
estimation of their VaR forecasts. The results are very similar for both commonly employed confidence levels, 95% and 99%.
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Table A.1
Evaluation of covariance forecasts based on DCC-EGARCH and DCC-GJR models: the MSE criterion.

Assets DCC-GARCH DCC-EGARCH DCC-GJR DCC-GARCH vs.
DCC-EGARCH

DCC-GARCH vs.
DCC-GJR

MSE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.654 0.756 0.755 0.953 0.946
EUR/USD-GBP/USD 0.698 0.939 0.923 0.809 0.797
JPY/USD-GBP/USD 1.334 2.033 2.052 0.812 0.819

Exchange-traded funds

Oil-Natural Gas 62.800 64.495 64.842 0.997 1.000
Oil-Energy 61.59 67.994 67.968 0.999 0.995
Natural Gas-Energy 30.734 31.307 31.530 0.984 1.000

Stocks

Amazon-Apple 198.291 198.909 200.043 0.682 0.792
Amazon-Goldman Sachs 77.756 76.526 75.877 0.086 0.067
Amazon-Google 169.777 175.503 175.194 0.926 0.914
Amazon-IBM 48.742 47.569 48.025 0.005 0.092
Apple-Goldman Sachs 99.387 103.087 102.637 0.989 0.989
Apple-Google 267.998 279.135 274.478 1.000 0.853
Apple-IBM 148.393 150.017 150.018 0.987 0.990
Goldman Sachs-Google 66.695 70.884 69.567 1.000 0.995
Goldman Sachs-IBM 41.495 41.751 41.582 0.789 0.654
Google-IBM 56.133 56.646 56.662 0.873 0.878

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance
and estimated as the sum of products of 15-min returns. The lowest values of MSE are marked in bold. The p-values of the
Diebold–Mariano test are presented for pairs of models with respect to the benchmark the DCC-GARCH model. A p-value lower
than the significance level means that the forecasts of covariance from the DCC-EGARCH or DCC-GJR models are more accurate
than the forecasts from the DCC-GARCH model.

Table A.2
Evaluation of covariance forecasts based on DCC-EGARCH and DCC-GJR models: the MAE criterion.

Assets DCC-GARCH DCC-EGARCH DCC-GJR DCC-GARCH vs.
DCC-EGARCH

DCC-GARCH vs.
DCC-GJR

MAE P-value of DM test

Currency rates

EUR/USD-JPY/USD 0.106 0.113 0.111 1.000 1.000
EUR/USD-GBP/USD 0.098 0.107 0.100 1.000 0.801
JPY/USD-GBP/USD 0.088 0.090 0.089 0.754 0.639

Exchange-traded funds

Oil-Natural Gas 1.453 1.466 1.468 0.992 1.000
Oil-Energy 1.291 1.297 1.302 0.650 0.734
Natural Gas-Energy 1.046 1.043 1.051 0.232 0.842

Stocks

Amazon-Apple 1.299 1.258 1.289 0.000 0.134
Amazon-Goldman Sachs 1.209 1.134 1.145 0.000 0.000
Amazon-Google 1.506 1.333 1.329 0.000 0.000
Amazon-IBM 0.875 0.820 0.829 0.000 0.000
Apple-Goldman Sachs 1.060 1.115 1.158 1.000 1.000
Apple-Google 1.157 1.483 1.483 1.000 1.000
Apple-IBM 0.820 0.866 0.891 1.000 1.000
Goldman Sachs-Google 1.093 1.134 1.120 1.000 1.000
Goldman Sachs-IBM 0.841 0.828 0.839 0.005 0.355
Google-IBM 0.742 0.755 0.755 0.993 0.991

The realized covariance is used as a proxy of covariance and estimated as the sum of products of 15-min returns. The lowest
values of MAE are marked in bold. The p-values of the Diebold–Mariano test are presented for pairs of models with respect to
the benchmark DCC-GARCH model. A p-value lower than the significance level means that the forecasts of covariance from the
DCC-EGARCH or DCC-GJR models are more accurate than the forecasts from the DCC-GARCH model.

5. Conclusion

The DCC-GARCH model is one of the most popular multivariate volatility models, due to its simplicity and ease of estimation.
However, its parameters are usually estimated based only on closing prices, even though high and low prices contain more
information about volatility. In this study, we have proposed a new specification of the DCC model called the DCC-Range-GARCH
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Table A.3
Evaluation of variance forecasts: the MSE and MAE criteria for realized variance calculated based on 5-min returns.

Assets GARCH CARR RGARCH GARCH CARR RGARCH

MSE MAE

Currency rates

EUR/USD 0.106 0.111 0.093 0.157 0.158 0.147
GBP/USD 0.721 1.025 0.486 0.158 0.149 0.139
JPY/USD 0.411 0.462 0.317 0.219 0.215 0.194

Exchange-traded funds

Energy 7.695 8.086 6.581 1.138 1.232 0.991
Oil 13.154 18.126 14.142 2.119 2.365 2.043
Natural Gas 20.715 24.516 21.849 3.061 3.350 3.038

Stocks

Amazon 199.106 192.202 194.809 3.941 2.347 3.393
Apple 96.345 97.437 102.881 2.504 3.315 2.404
Goldman Sachs 18.464 17.595 17.450 1.901 1.953 1.806
Google 68.873 59.054 60.641 2.174 1.898 1.910
IBM 15.504 14.592 14.935 1.180 1.078 1.099

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and
estimated as the sum of squares of 5-min returns. The lowest values of MSE and MAE are marked in bold.

Table A.4
Evaluation of variance forecasts: the LINEX function with a = −1.

Assets GARCH CARR RGARCH GARCH CARR RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD 0.301 0.407 0.210 0.019 0.021 0.018
GBP/USD 1015.023 1.500e+04 59.152 0.013 0.015 0.012
JPY/USD 5.190e+07 8.880e+13 1.012e+05 0.036 0.033 0.029

Exchange-traded funds

Energy 4.842 275.893 12.034 1.410 2.584 0.872
Oil 7784.863 3.710e+08 1.185e+04 77.673 148.632 54.823
Natural Gas 2379.619 3005.722 2379.228 34.479 1486.421 62.574

Stocks

Amazon 698.416 32.762 62.284 2.094 1.801 1.483
Apple 328.116 4.120e+13 3.530e+16 13.742 5.866 7.255
Goldman Sachs 7.469e+05 5.362e+04 7.375e+04 2.044 3.335 2.046
Google 1.120e+18 52.643 29.517 1.625 1.297 1.042
IBM 1.396 0.880 1.176 0.375 0.334 0.324

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and
estimated as the sum of squares of 15-min returns. The lowest values of the LINEX function are marked in bold.

Table A.5
Evaluation of variance forecasts: the LINEX function with a = 1.

Assets GARCH CARR RGARCH GARCH CARR RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD 0.301 0.407 0.210 2,206e−02 2,283e−02 2,031e−02
GBP/USD 5,190e+07 8,881e+13 1,012e+05 1,504e−02 1,504e−02 1,285e−02
JPY/USD 1,015e+03 1,500e+04 5,915e+01 4,273e−02 4,170e−02 3,617e−02

Exchange-traded funds

Energy 7,661e+24 6,502e+25 3,173e+24 101.585 26.510 24.855
Oil 7,990e+16 2,846e+17 1,817e+17 2,463e+04 8,599e+04 6,073e+04
Natural Gas 1,206e+21 1,793e+23 1,449e+23 2732.795 4001.910 2715.055

(continued on next page)

72

Chapter 4. Range-based DCC models for covariance and value-at-risk forecasting 50



P. Fiszeder, M. Fałdziński and P. Molnár Journal of Empirical Finance 54 (2019) 58–76

Table A.5 (continued).
Assets GARCH CARR RGARCH GARCH CARR RGARCH

Full sample Excluding 1% of upper outliers

Stocks

Amazon 9,198e+135 4,589e+138 3,725e+135 2,250e+11 1,790e+10 1,416e+11
Apple 4,573e+128 1,856e+95 1,600e+97 2,606e+07 8,760e+07 1,921e+08
Goldman Sachs 8,917e+15 1,104e+16 2,803e+14 405.994 102.403 243.711
Google 6,214e+67 4,470e+67 8,280e+67 3,076e+03 3,737e+04 4,420e+04
IBM 7,689e+22 1,113e+30 8,391e+29 51.523 50.826 41.546

The evaluation period is January 4, 2010, to December 30, 2016, the realized variance is used as a proxy of variance and
estimated as the sum of squares of 15-min returns. The lowest values of the LINEX function are marked in bold.

Table A.6
Evaluation of covariance forecasts: the MSE and MAE criteria for realized covariance calculated based on 5-min returns.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

MSE MAE

Currency rates

EUR/USD-JPY/USD 0.041 0.048 0.035 0.096 0.101 0.093
EUR/USD-GBP/USD 0.060 0.082 0.043 0.094 0.093 0.087
JPY/USD-GBP/USD 0.071 0.122 0.055 0.080 0.083 0.078

Exchange-traded funds

Oil-Natural Gas 5.940 6.146 5.979 1.392 1.417 1.383
Oil-Energy 5.714 9.734 5.640 1.247 1.451 1.161
Natural Gas-Energy 2.923 8.124 2.869 1.002 2.005 0.976

Stocks

Amazon-Apple 15.597 14.959 13.280 1.202 1.059 1.051
Amazon-Goldman Sachs 6.657 6.230 5.994 1.140 1.051 1.034
Amazon-Google 14.906 13.894 12.957 1.441 1.222 1.193
Amazon-IBM 4.315 4.038 3.733 0.826 0.739 0.714
Apple-Goldman Sachs 7.480 7.534 6.677 0.993 0.974 0.917
Apple-Google 17.530 17.337 14.424 1.075 0.990 0.942
Apple-IBM 11.066 10.786 8.328 0.781 0.728 0.680
Goldman Sachs-Google 5.318 4.966 4.360 1.027 0.980 0.899
Goldman Sachs-IBM 3.404 3.272 2.999 0.791 0.770 0.709
Google-IBM 4.630 4.360 3.827 0.705 0.649 0.614

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance and
estimated as the sum of products of 5-min returns. The lowest values of MSE and MAE are marked in bold.

Table A.7
Evaluation of covariance forecasts: the LINEX function with a = −1.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD-JPY/USD 0.149 0.338 0.076 8,744e−03 6,985e−03 6,085e−03
EUR/USD-GBP/USD 0.020 0.019 0.021 8,755e−03 9,538e−03 8,503e−03
JPY/USD-GBP/USD 334.772 3,301e+04 11.909 5,310e−03 5,535e−03 5,004e−03

Exchange-traded funds

Oil-Natural Gas 2,590e+06 1,771e+06 2,001e+06 8.122 8.769 7.664
Oil-Energy 2.190 1.072 1.585 1.368 0.870 1.072
Natural Gas-Energy 1716.904 3,315e+05 1000.640 2.278 107.617 2.016

Stocks

Amazon-Apple 7075.788 2292.080 3985.507 0.722 0.487 0.518
Amazon-Goldman Sachs 5106.527 2016.502 5924.394 0.635 0.556 0.565
Amazon-Google 1,280e+08 1,570e+08 1,170e+08 1.008 0.670 0.665
Amazon-IBM 51.210 53.546 74.122 0.313 0.234 0.230

(continued on next page)
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Table A.7 (continued).
Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

Full sample Excluding 1% of upper outliers

Apple-Goldman Sachs 2,750e+05 2,350e+05 2,446e+05 0.496 0.472 0.428
Apple-Google 13.275 111.506 1104.156 0.641 0.521 0.493
Apple-IBM 1.060 1.310 26.865 0.258 0.578 0.545
Goldman Sachs-Google 3,820e+08 6,970e+08 3,480e+08 0.582 0.578 0.545
Goldman Sachs-IBM 706.926 523.911 869.393 0.270 0.252 0.235
Google-IBM 1,367e+06 6,258e+05 1,188e+06 0.190 0.168 0.162

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance and
estimated as the sum of products of 15-min returns. The lowest values of the LINEX function are marked in bold.

Table A.8
Evaluation of covariance forecasts: the LINEX function with a = 1.

Assets DCC-GARCH DCC-CARR DCC-RGARCH DCC-GARCH DCC-CARR DCC-RGARCH

Full sample Excluding 1% of upper outliers

Currency rates

EUR/USD-JPY/USD 0.082 0.094 0.053 9,379e−03 1,038e−02 9,186e−03
EUR/USD-GBP/USD 2.832 33.415 0.322 7,551e−03 7,295e−03 6,649e−03
JPY/USD-GBP/USD 0.043 0.035 0.100 5,626e−03 5,913e−03 5,303e−03

Exchange-traded funds

Oil-Natural Gas 4,393e+06 7,413e+06 8,555e+06 7.022 8.507 8.077
Oil-Energy 8,996e+12 2,484e+14 7,500e+12 68.685 1194.447 54.811
Natural Gas-Energy 3,420e+04 4,503e+03 4,924e+04 1.060 1.298 1.128

Stocks

Amazon-Apple 8,926e+54 2,283e+55 1,786e+55 20.741 12.284 15.554
Amazon-Goldman Sachs 3,554e+23 6,687e+23 4,391e+23 16.859 14.397 23.327
Amazon-Google 1,992e+33 1,023e+34 6,252e+33 1217.696 342.058 744.859
Amazon-IBM 4,911e+16 5,291e+16 4,548e+16 5.500 3.768 5.002
Apple-Goldman Sachs 1,213e+38 4,439e+38 3,180e+38 3.709 2.987 3.258
Apple-Google 8,100e+11 2,099e+10 3,360e+10 976.587 1301.767 935.519
Apple-IBM 1,485e+07 1,252e+07 1,533e+07 5.479 3.032 3.542
Goldman Sachs-Google 9,756e+22 6,748e+23 1,957e+09 14.760 6.429 10.240
Goldman Sachs-IBM 6,722e+12 9,757e+12 7,831e+12 1.973 1.700 1.848
Google-IBM 7,565e+22 7,253e+22 2,276e+16 1.404 1.489 1.322

The evaluation period is January 4, 2010, to December 30, 2016, the realized covariance is used as a proxy of covariance and
estimated as the sum of products of 15-min returns. The lowest values of the LINEX function are marked in bold.

model, which is a combination of the DCC model by Engle (2002) and the Range-GARCH model by Molnár (2016). The DCC-Range-
GARCH model is very similar to the DCC model by Engle but it is based on a much more efficient volatility estimator formulated
on the daily range, the log-difference between the high and low prices.

We have compared our DCC-Range-GARCH model to the DCC-GARCH model by Engle (2002) and the DCC-CARR model by
Chou et al. (2009). All these three models are very similar in their correlation part, but differ in their specification for conditional
variances. The DCC-GARCH model is based on the GARCH model, the DCC-Range-GARCH model is formulated on the Range-GARCH
model and the DCC-CARR model is based on the CARR model by Chou (2005). We have evaluated these models on three data sets:
currencies, exchange traded funds and stocks.

The univariate range-based models, CARR and Range-GARCH, had not been previously compared. We therefore first compare
forecasting accuracy of these models. We found that the CARR model is outperformed by the Range-GARCH model. Surprisingly,
the CARR model is often inferior even to the standard GARCH model, whereas the Range-GARCH model outperforms it in most
cases. We then turned our attention to multivariate models and the comparison of covariance forecasts, which were the main focus
of this paper. We found that the proposed DCC-Range-GARCH model is superior not only to the standard DCC-GARCH model but
also to the DCC-CARR model.

Our results illustrate that the use of range data in the DCC model can improve the estimation of covariances of returns and
increase the accuracy of covariance and VaR forecasts based on this model, compared with using closing prices only. Moreover, the
way the range is utilized matters, as our proposed model outperforms the DCC-CARR model, which is also based on range. Therefore,
other multivariate range-based volatility models such as the double smooth transition conditional correlation CARR model by Chou
and Cai (2009), the range-based copula models by Chiang and Wang (2011) and Wu and Liang (2011) and the range-based regime-
switching dynamic conditional correlation model by Su and Wu (2014) would probably also benefit from using the Range-GARCH
model in place of the CARR specification.
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Table A.9
Evaluation of 99% VaR forecasts: unconditional coverage and independence tests.

Statistic DCC-GARCH DCC-CARR DCC-RGARCH

Value P-value Value P-value Value P-value

Currency rates

LRUC 0.270 0.603 4.621 0.032 0.076 0.782
LRIND 0.285 0.594 0.567 0.452 0.321 0.571
LRCC 0.555 0.758 5.188 0.075 0.398 0.820
JUC 0.080 0.746 4.093 0.042 0.001 0.911
JIND 3.275 0.130 3.308 0.129 1.858 0.310
JCC 3.728 0.253 6.720 0.087 2.012 0.520

Exchange-traded funds

LRUC 2.039 0.153 0.008 0.928 0.414 0.520
LRIND 0.165 0.685 0.372 0.542 0.258 0.612
LRCC 2.204 0.332 0.380 0.827 0.672 0.715
JUC 1.658 0.206 0.101 0.739 0.166 0.652
JIND 2.770 0.181 0.508 0.788 0.323 0.883
JCC 16.695 0.019 0.545 0.990 0.559 0.915

Stocks

LRUC 26.337 0.000 1.514 0.219 28.175 0.000
LRIND 0.721 0.396 1.050 0.306 0.631 0.427
LRCC 27.059 0.000 2.564 0.278 28.806 0.000
JUC 15.976 0.001 1.713 0.159 16.827 0.001
JIND 8.888 0.013 83.216 0.000 5.052 0.055
JCC 27.499 0.008 31.612 0.008 26.992 0.007

The evaluation period is January 4, 2010, to December 30, 2016, LRUC is the statistic for the Kupiec (1995)
unconditional coverage test, LRIND is the statistic for the Christoffersen (1998) independence test, LRCC is the
statistic for the Christoffersen (1998) conditional coverage test, JUC is the statistic for the Candelon et al. (2011)
unconditional coverage test, JIND is the statistic for the Candelon et al. (2011) independence test for up to five
lags, JCC is the statistic for the Candelon et al. (2011) conditional coverage test with the number of moments
fixed to 5, p-values for JUC, JIND, JCC were corrected by Dufour’s (2006) Monte Carlo procedure.

Table A.10
Evaluation of 99% VaR forecasts: firm loss functions tests.

Loss function DCC-GARCH DCC-CARR DCC-
RGARCH

DCC-GARCH vs.
DCC-RGARCH

DCC-CARR vs.
DCC-RGARCH

Value of loss function × 101 P-value of DM test

Currency rates

FLF(STS) 0.506 0.514 0.502 0.066 0.021
FLF(C1) 6.913 6.927 6.900 0.080 0.012
FLF(C2) 5.322 5.405 5.280 0.110 0.000
FLF(C3) 9.981 9.988 9.939 0.149 0.076

Exchange-traded funds

FLF(STS) 1.744 1.849 1.751 0.599 0.001
FLF(C1) 6.865 6.862 6.800 0.000 0.000
FLF(C2) 17.239 17.239 16.764 0.000 0.000
FLF(C3) 33.010 33.260 32.392 0.000 0.000

Stocks

FLF(STS) 1.474 2.029 1.416 0.014 0.000
FLF(C1) 6.811 7.535 6.734 0.000 0.000
FLF(C2) 13.532 23.767 12.907 0.000 0.000
FLF(C3) 26.455 37.688 25.790 0.000 0.000

The evaluation period is January 4, 2010, to December 30, 2016, FLF(STS) is the loss function by Sarma et al. (2003), FLF(C1),
FLF(C2), FLF(C3) are three loss functions by Caporin (2008). The lowest values of loss functions are marked in bold. The
p-values of the Diebold–Mariano test are presented for pairs of models with respect to the two benchmarks: the DCC-GARCH
and DCC-CARR models. A p-value lower than the significance level means that economic losses for the DCC-RGARCH model are
lower than those for a benchmark model (here DCC-GARCH or DCC-CARR).

Appendix

See Tables A.1–A.10.
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We investigate the impact of monetary policy announcements on stock market volatility in
the U.S., Canada, Japan, the U.K., Germany, France and Italy during the 2006–2016 period.
More specifically, we study the impact of policy rate and quantitative easing announce-
ments of domestic and foreign central banks on realized volatility before, during, and after
the event. We find that on the day of an interest rate announcement of the domestic central
bank, volatility increases in a manner that is both statistically and economically significant.
We also find a decline in volatility five days after an interest rate announcement across all
countries in our sample. We further find that quantitative easing announcements have no
impact on stock market volatility not only at but also five days before and five days after
the announcement date.
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1. Introduction

Participants in financial markets closely follow announcements of macroeconomic news. The macroeconomic situation is
directly relevant to the valuation of financial assets; therefore, the news often tells market participants whether they should
update prices upwards or downwards. Due to the major importance of this topic, a large body of literature assesses the
impact of macroeconomic news announcement on financial markets. Stock market reaction was studied by Flannery and
Protopapadakis (2002), Ehrmann and Fratzscher (2004), Bernanke and Kuttner (2005), Bekaert and Engstrom (2010), and
Hussain (2011). The response of foreign exchange markets was investigated by Almeida et al. (1998), Andersen et al.
(2003), Ehrmann and Fratzscher (2005), Evans and Speight (2010a), Omrane and Hafner (2015), Petralias and Dellaportas
(2015), and El Ouadghiri and Uctum (2016); see Neely and Dey (2010) for a review. The impact of macroeconomic announce-
ments on government bond markets has been investigated by Fleming and Remolona (1997, 1999), Christie-David et al.
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(2002), Balduzzi et al. (2001), Gürkaynak et al. (2005), Beechey and Wright (2009), and El Ouadghiri et al. (2016), whereas
other authors have studied several classes of assets, see Boyd et al. (2005), Faust et al. (2007), Bartolini et al. (2008).

Central bank announcements are one of the most important types of macroeconomic announcements. Market partici-
pants closely focus on monetary policy decisions; see Thorbecke (1997) and Thornton (1998). Since an understanding of
volatility is important for market participants, the impact of news announcements on volatility has been investigated.
Harvey and Huang (1991) and Ederington and Lee (1993) find that volatility increases around macroeconomic announce-
ments. This topic was further studied by Dominguez (1998), Nikkinen and Sahlström (2001), Bauwens et al. (2005),
Dominguez (2006), Nikkinen et al. (2006), Beine et al. (2009) and many others.

In this study we give answer to the question of how volatility on equity markets reacts to central banks’ key scheduled
monetary policy announcements. If market volatility decreases, we say that news announcement has a stabilizing impact on
equity markets and vice versa. As market’s response is likely to vary before, at or after the news announcement, we study all
three cases separately. The previous literature does not offer a satisfactory answer to our question. For example, the previous
literature documents an increase in volatility around news announcements, this cannot be interpreted as finding that
announcements have a destabilizing impact on financial markets. The information content of news is usually high; therefore,
it is only natural that volatility is high around earnings announcements. For example, Chae (2005) argues that if the infor-
mation content of news is high, it will necessarily increase trading volume (and thus volatility) in the market because market
participants adjust their views based on the news provided. Thus, the consensus of market participants increases on the day
of the news announcement.

One way to evaluate whether news announcements have a stabilizing or destabilizing impact on financial markets is to
investigate whether volatility increases or decreases several days after the announcement. This question has been addressed
before; however, we argue that it was not answered satisfactorily for two reasons.

First, this question was originally addressed within the generalized autoregressive conditional heteroscedasticity
(GARCH) framework based on daily data; see Bomfim (2003), Kim et al. (2004) and Bauwens et al. (2005). However, the ques-
tion whether volatility increased on a particular day can be answered more accurately with help of more precise volatility
data, for example from realized volatility calculated from high-frequency data.

Second, researchers began to utilize implied volatility calculated from option prices, see Ederington and Lee (1993),
Nikkinen and Sahlstr}om (2004), Äijö (2008), Aktas (2011), Füss et al. (2011), Jiang et al. (2012), Marshall et al. (2012) and
Krieger et al. (2015). Studies based on implied volatility usually find that volatility decreases after the announcement of
scheduled news.

We instead use realized volatility calculated from high-frequency data for the 2006–2016 period. High-frequency data
have previously been used to evaluate the impact of news announcements but usually have been used to study market reac-
tion immediately before and immediately after an announcement; see Balduzzi et al. (2001) and Evans and Speight (2010b).
These studies typically find that the direct impact of news announcements is concentrated in a very short time window
around the announcement. We study whether stock market volatility increases or decreases 5 days before, the day of and
5 days after monetary policy announcements by central banks in G7 countries. Our contribution to the literature is threefold.
First, most of the papers studying the impact of monetary policy announcements on financial markets study foreign
exchange markets, not stock markets. However, interest rates have a profound relationship to stock markets (e.g.
Sweeney and Warga, 1986; Akhtaruzzaman et al., 2014). For example, given the present value cash flow discounting model
to stock valuation, the relationship between interest rates and stock markets should be negative. Monetary policy announce-
ments are therefore likely to have broad impact on stocks markets and we contribute to this literature. Second, we use a
multi-country sample, five central banks and their impact on the volatility of eight stock market indices. Moreover, we con-
trol for the news announcements related to interest rate and quantitative easing of foreign central banks as well. This way
we control for the possible interconnectedness and/or coordination of monetary policy1. Third, the literature in this field is
based on implied volatility, and there are large differences in the behavior of implied and realized volatility around scheduled
announcements, as we explain in the following section. By using realized instead of the implied volatility, our approach offers a
new and different insights into the role of monetary policy announcements on the stock market volatility. Employing realized
volatility allows us to take a look at the role of news announcement on the actual (realized) price variation of stock markets not
on the expectations.

Market level analysis reveals that realized volatility of equity markets is increased on the day when the domestic central
bank announces its policy toward the target interest rate and declines during the subsequent five days. Evidence from
dynamic common correlated effect panel models shows that announcements of foreign central banks related to target inter-
est rates tend to increase market volatility (5 days) before and at the news announcements and lead to a mild decline
(5 days) after the news announcement. We control for many factors, including: movements on the foreign exchange and
money markets, volatility persistence, day-of-the-week effects, uncertainty about the outcome of a policy meeting, the sur-
prise effect of a policy announcement, the effect of quantitative easing announcements and, importantly, the news released
by the foreign central banks of the remaining markets in our sample.

1 A leading example is the joint announcement of interest rate cuts on 8th October 2008 by FED, ECB, Bank of Canada, Bank of England, Swiss National Bank,
and The People’s Bank of China.
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The remainder of this paper is organized as follows. In Section 2 we briefly discuss differences between implied and real-
ized volatility in a context of an event study. Section 3 describes our data, and the econometric methodology is presented in
Section 4, which also includes a detailed description of the explanatory and control variables. In Section 5, we present our
results, and Section 6 concludes.

2. Implied and realized volatility in an event study

Implied and realized volatility might behave similarly over the longer time period but more differently around certain
events that last for only several of days. First of all, realized volatility is an estimate of price variation over a particular period,
say a day. Implied volatility typically used in the literature is calculated from option prices with maturity close to the next 30
calendar days. Assume that everybody (correctly) expect that stock market volatility on one particular day will be unusually
high. In this case, realized volatility before that day will not pick up that information (as it is historical) and on that particular
day it will be unusually high. However, implied volatility before this particular day will already be higher, but presumably
not that much, as the maturity of underlying options also includes other 29 calendar days. Therefore, changes in realized
volatility will be more pronounced than changes in implied volatility. Moreover, this 30-day averaging has an impact on
how to interpret changes in implied volatility, as we discuss later.

Second, implied volatility is not simply an expected volatility. Implied volatility is usually significantly higher than what
volatility turns out to be ex post (see e.g. Birkelund et al., 2015). Implied volatility can be considered as a sum of expected
volatility and volatility risk premium. Therefore, it is difficult to disentangle whether change in implied volatility should be
attributed to change in expected volatility, or change in volatility risk premium.

The different behavior of implied volatility and realized volatility around the event day is illustrated in Fig. 1, in which we
plot daily percentage changes in realized and implied volatility on the S&P 500 (VIX) around an interest rate announcement
for the U.S. stock market. As can be observed, on the event date, realized volatility increases, whereas implied volatility
decreases. This result is likely caused by the fact that realized volatility is calculated during the entire trading period of
the day, whereas implied volatility is a closing value from the end of the day, and it therefore reflects the market expecta-
tions for the next 30 days that excludes news announcements made earlier during or before trading hours of that particular
day. If news announcement day is a day with higher volatility, implied volatility the day before the news announcement
should be higher than at the news announcement day. In Fig. 1, our data support this reasoning. In other words, there is
a tendency for implied volatility to decrease after the highly volatile announcement day is excluded from the 30-day time
window.

As the news might also contain information that in the future, price variation will be low or high, changes in implied
volatility might consist of two parts: decline due to exclusion of volatile day from a 30-day maturity window and
increase/decrease in the future levels of price variation due to new information. Therefore, simply observing decrease in
implied volatility does not tell us that an announcement had a calming effect on financial markets.

Instead, we utilize realized volatility calculated from high-frequency data. Consequently, we have an estimate of price
variation for each individual day, and we can easily evaluate whether volatility increases or decreases before, during and
after a monetary policy announcement. Altogether, realized volatility convey different type of information than implied
volatility, and therefore our study complement existing literature.

3. Data

Our sample begins in January 2006 and ends in November 2016. We cover the G7 countries, which are a group of the
seven major advanced economies according to the International Monetary Fund. This group consists of Canada, France,
Germany, Italy, Japan, the United Kingdom, and the United States. Our data can be divided into three main categories: stock
market indices, news announcements from central banks, and exchange rate and interest rate data. Because France, Germany
and Italy are part of the European monetary union, their stock markets share the same set of news announcements from the
European Central Bank (ECB).

3.1. Stock market indices

We study the effect of the news announcements of central banks on seven stock market indices: S&P 500 (United States),
FTSE 100 (United Kingdom), TSX (Canada), NIKKEI 225 (Japan), STOXX 50 (Europe), DAX (Germany), CAC (France), and MIB
(Italy). The measures of volatility are precalculated for the given sample period and are downloaded directly from the
Oxford-Man Institute of Quantitative Finance Realized Library2.

2 http://realized.oxford-man.ox.ac.uk/data/download2
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3.2. News announcements

We focus on the most important macroeconomic news announcements related to the central banks: target interest rates
and quantitative easing. The target interest rate is an essential part of monetary policy strategy. Many central banks set a
target interest rate in an effort to influence short-term interest rates. The data were collected from Bloomberg and are
described in Table 1.

For Canada and the United Kingdom, the data about the target interest rate announcement required no adjustments and
are easily available for the entire observed period. The European Central Bank reports the ECBMain Refinancing Rate, the ECB
Deposit Facility Rate, and the ECB Marginal Lending Facility. We refer only to the first interest rate noted because it is the
most important rate, which unlike the other two rates, was reported during the entire observed period. Moreover, all these
rates are announced at the same time. In the United States, the federal funds rate is targeted by the Federal Reserve’s Federal
Open Market Committee (FOMC). In December 2008, the target interest rate was replaced by a target range. We use the
FOMC Rate Decision (Upper Bound) because Bloomberg also uses this label for the interest rate reported before the introduc-
tion of the target range. Therefore, this variable covers the entire observed period. Conversely, the variable representing the
lower bound of the interest rate was introduced only after December 2008.

The situation in Japan is slightly more complex. On April 4, 2013, the Bank of Japan shifted its monetary policy focus to a
targeted monetary base via Japanese government bond purchases.3 On January 29, 2016, the Bank of Japan employed a new
approach to its monetary policy known as ‘‘Quantitative and Qualitative Monetary Easing with a Negative Interest Rate.”4 As
a result of these twomajor changes in monetary policy, there is a gap in our data from April 4, 2013, to January 29, 2016, because
no interest rate news was announced. During this period, the Bank of Japan targeted a monetary base instead of the interest rate.

The second category of news announcements is related to quantitative easing. This category is an unconventional mon-
etary policy used by central banks to stimulate their economies when conventional monetary policy is no longer effective.
This category is often used in situations in which the central bank’s interest rates are currently near zero, and there is little
room for a greater decline. Quantitative easing usually consists of the purchases of long-term financial assets from banks and
other financial institutions. This policy creates additional money in the economy and should lower long-term interest rates.

As days of quantitative easing, we select the days when the introduction of quantitative easing or any change in this pol-
icy were announced. During our sample period all the selected countries except Canada have experiences with quantitative
easing. The relevant data were collected manually from the official sites of the central banks.5

Fig. 1. Target rate announcements and the realized and implied volatilities of the S&P 500. Notes: The values on the y-axis are percentage changes in either
the realized variance (RV) or the value of the VIX index. B5, B4, . . ., B1 denote 5, 4, . . ., 1 day before the target rate announcement, respectively. E0 is the day
of the target rate announcement. A1, A2, . . ., A5 denote 1, 2, . . ., 5 days after the target rate announcement, respectively.

3 http://www.boj.or.jp/en/announcements/release_2013/k130404a.pdf3
4 http://www.boj.or.jp/en/announcements/release_2016/k160129a.pdf4
5 http://www.boj.or.jp/en/mopo/mpmsche_minu/index.htm/#p01https://www.ecb.europa.eu/press/govcdec/html/index.en.htmlhttps://www.federalre-

serve.gov/newsevents/press/monetary/2016monetary.htmhttp://www.bankofengland.co.uk/monetarypolicy/Pages/decisions.aspx.
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Before our analysis begins, we attribute each news to a given event window, i.e., whether the news became public before,
during, or after the trading hours of markets in our sample. For example, on January 12, 2006, at 12:00:00, the scheduled
target rate announcement in the U.K. occurred during trading hours in the U.K. and EU markets but before trading began
in the U.S. and Canada and after trading hours in Japan. Thus, we synchronized each event separately for each market.

3.3. Exchange rate and interest rate data

Our dataset also contains information about each country’s short-term interest rates and exchange rates. The data are at
daily frequencies and cover the same time period as the macroeconomic news announcements. The interest rate is repre-
sented by the short-term 3-month interest rate for each country. Furthermore, we utilize the so-called ‘‘effective exchange
rate.” An effective exchange rate is calculated as a weighted average of the individual exchange rates of a particular country
with its main trading partners. This rate is also known as a trade-weighted exchange rate because the weights are set accord-
ing to the importance of each partner country’s share of trade with the reporting country.

4. Methodology

In this section, we first describe how we measure the volatility of stock markets. Next, we describe our methodology, and
ultimately, we explain all the explanatory variables used in the analysis.

4.1. Volatility estimators

The impact of news announcements on stock market variance is based on modeling the realized measures of daily
volatility, which is the variable of interest in this study. The most common estimator of daily volatility in the literature is
given as follows:

XN
j¼1

r2i;t;j ð1Þ

In (1), ri,t,j is the jth intraday return of ith stock market index at day t. N denotes the number of intraday returns, which is a
function of the length of the trading hours and the sampling frequency. However, in the presence of microstructure noise, the
estimator provided in (1) is biased. Alternatively, one could employ one of several estimators, which are consistent in the
presence of a form of microstructure noise (e.g., Barndorff-Nielsen and Shepard, 2004; Hansen and Lunde, 2006;
Shephard and Sheppard, 2010; Andersen et al., 2012). A different empirical strategy that we follow in this study was sug-
gested by Patton and Sheppard (2009), who show that different measures may encompass different information; they also
advocate the use of a combination of realized measures. Motivated by these considerations, we report the results for a simple
arithmetic average of the following eight realized measures of volatility (Barndorff-Nielsen and Shepard, 2004; Hansen and
Lunde, 2006; Shephard and Sheppard, 2010; Andersen et al., 2012):

� 5-min realized volatility.
� 10-min realized volatility.
� 5-min realized kernel.
� 5-min realized volatility with 1-min sub-sampling.
� 10-min realized volatility with 1-min sub-sampling.
� 5-min bi-power volatility.
� 5-min bi-power volatility with 1-min sub-sampling.
� 5-min median-truncated volatility.

In all our calculations, we use the logarithm of the resulting mean realized variance, i.e., realized volatility, because the
distribution of the realized variances tends to be skewed to the right and is subject to outliers. We denote the log of the com-
bination of realized measures simply as RVt and refer to it as realized volatility in the subsequent text.

Table 1
Interest rate news announcements. Source: https://www.bloomberg.com.

Country Event name from Bloomberg Ticker

Canada Bank of Canada Rate Decision CABROVER Index
Eurozone ECB Main Refinancing Rate EURR002W Index
Japan BOJ Target Rate BOJDTR Index
United Kingdom Bank of England Bank Rate U.K. BRBASE Index
United States FOMC Rate Decision (Upper Bound) FDTR Index
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4.2. Econometric models

4.2.1. Univariate model
The impact of news announcement on eight stock market indices is evaluated for each index separately by modeling the

Difference of the RVt using a Heterogeneous AutoRegressive model with eXogenous variables and Generalized AutoRegres-
sive Conditional Heteroskedastic errors (DHARX-GARCH henceforth). The choice to model differences in the RVt is motivated
by the observation that DRVt is less persistent and thus more suitable for time-series modeling. The choice is also in accor-
dance with the existing literature. For example, Marshall et al. (2012) have studied the log difference in implied volatilities.
For the sake of robustness, we estimate not only models for change in realized volatility but also models in which the depen-
dent variable is the level of realized volatility (see Section 5.4). The specification is as follows:

DRVt ¼ l0 þ l1RVt�1 þ l2RVt�1;t�5 þ l2RVt�1;t�22 þ
XSðiÞ
s¼1

jsEVs þ
XCðiÞ
c¼1

dcCVc þ zt

zt ¼ ð1þ h1L
1Þet

et ¼ rtgt ; gt � iidð0; 1Þ

ð2Þ

In model (2), l, j, d, and h are model parameters. By EVs, we denote event variables, and by CVc, we denote control vari-
ables (described in more detail in Section 3.3). The variable RVt�1 is the lagged realized volatility, and RVt�1,t�5, RVt�1,t�22 are
the average realized volatilities across the previous five and twenty-two trading days, respectively. The lagged realized
volatilities tend to capture both weekly and monthly volatility movements, and all three should reflect the heterogeneity
in investors’ dealing frequencies and investment time horizons (Müller et al., 1997; Corsi, 2009).

Although the lagged realized volatilities and other exogenous variables capture most of the dynamics of market volatility,
the error term zt may remain subject to autocorrelation and conditional heteroscedasticity. We therefore model the term zt
as a moving average process (L is the lag operator), whereas we allow the evolution of r2

t to follow a suitable GARCH model.
Two GARCH models are considered: the standard model of Bollerslev (1986),

r2
t ¼ xþ a1et�1 þ b1r2

t�1 ð3Þ
and Nelson’s (1991) exponential GARCH model,

lnðr2
t Þ ¼ xþ a1st�1 þ c1ðjst�1j � E½jst�1j�Þ þ b1 lnðr2

t�1Þ ð4Þ
In specification (4), st denotes standardized innovations, and ai and ci control for the leverage and sign effects,

respectively.
In addition to the standard normal distribution, we considered a possibility that gt follows a distribution that can capture

the possible asymmetric and leptokurtic properties of the residuals manifested in the behavior of the random variable gt.
Therefore, we also considered the SU-normal distribution of Johnson (1949a,b) with the probability density function defined
as follows:

f ðxÞ ¼ ð2pÞ�1=2Je�
z2
2 ð5Þ

where z = 1�1(sinh�1(x) – k) and J = 1�1(x2 + 1)1/2. k and 1 are shape parameters that specify the skewness and kurtosis of the
distribution.

Different choices for the process of r2
t and gt lead to four models6. We prefer models in which the resulting standardized

residuals do not display autocorrelation and conditional heteroscedasticity, as indicated by the Escanciano and Lobato (2009)
test. If more suitable models remain, we report a specification that was preferred according to the Bayesian information crite-
rion (BIC) (Schwartz, 1978).

4.2.2. Dynamic common correlated effect model
Estimating individual models allows us to observe market-level heterogeneities; however, it is obvious that due to com-

mon global factors, the realized volatilities of developed stock markets will be cross-correlated. Alternatively, we have con-
sidered an estimation of the dynamic common correlated effect model along the lines of Chudik and Pesaran (2015). We
considered estimating a dynamic panel that follows the mean equation specification of Eq. (2); in addition, we acted in accor-
dance with the approach as described in Ditzen (2016). To achieve consistent parameter estimates in the panel setting,
Chudik and Pesaran (2015) show that specifications such as that in Eq. (2) should be augmented with at least (T)1/3 cross-
sectional means (for up to 2770 observations, that is 14 additional variables). Specifically, we use the following
augmentation:

DRVi;t ¼ li;0 þ li;1RVi;t�1 þ li;2RVi;ðt�1;t�5Þ þ l2RVi;ðt�1;t�22Þ þ
XSðiÞ
s¼1

ji;sEVi;s þ
XCðiÞ
c¼1

di;cCVi;c þ
X3
l¼0

/i;l
�Zi;t�l þ zi;t ð6Þ

6 DHAR-GARCH with gt following normal distribution, DHAR-GARCH with gt in accordance with Johnson’s SU distribution, DHAR-EGARCH with gt following
normal distribution, and DHAR-EGARCH with gt in accordance with Johnson’s SU distribution.

122 Š. Lyócsa et al. / J. Int. Financ. Markets Inst. Money 58 (2019) 117–135

Chapter 5. Central bank announcements and realized volatility of stock markets in G7

countries
61



where index i is a given market, and the augmented variables that we assume are behind the cross-sectional dependence of
residuals in Eq. (2) are RVi,t�1, RVi,(t�1, t�5), RVi,(t�1, t�22) and DFXi,t, i.e. cross sectional averages of these four variables are
stacked into the vector �Zi;t�l. After stacking the coefficients li,1, li,2, li,3, ji,s, and di,c into a vector, pi = (li,1, li,2, li,3, ji,s, di,c).
The mean group estimates are as follows:

p̂MG ¼ 1
N

XN
i¼1

p̂i ð7Þ

We further use the following estimator of the asymptotic variance (Chudik and Pesaran, 2015):

Dðp̂MGÞ ¼ R̂MG

N
¼ 1

NðN � 1Þ
XN
i¼1

ðp̂i � p̂MGÞðp̂i � p̂MGÞ0 ð8Þ

where under that null hypothesis that the coefficients are equal to 0, the mean group estimates have the following asymp-
totic distribution:

ffiffiffiffi
N

p
ðp̂i � pÞ!d Nð0;RMGÞ ð9Þ

4.3. Explanatory variables

In this study, we investigate the impact of most relevant news announcements from central bank(s) on volatility of stock
markets. In Eqs. (2) and (6), js coefficients measure the impact of a news announcement on market volatility. For each stock
market index, we have considered several classes of variables that target capturing the reactions in the market before, dur-
ing, and after the event while also considering uncertainty about the announcement and the possible magnitude of the unex-
pected portion of the news announcement.

4.3.1. Key interest rate
Before the news announcement date To indicate the period before the news announcement, we introduce a dummy vari-

able BNtb(k) that returns a value of 1 if tb belongs to an n-day window prior to the scheduled announcement of the event k and
0 otherwise. We report the results for n = 5; however, in Section 5.4, we also consider other choices. As volatility levels clus-
ter, and tranquil and calm market periods tend to change, we multiply event variables by RVtb(k)�n�1,tb(k)�2n, which is the
average level of volatility over the n-days prior to the news announcement window of event k.

� BNtb(k) � RVtb(k)�n�1,tb(k)�2n. The interaction captures changes in volatility before the news announcement.
� BNtb(k) � RVtb(k)�n�1,tb(k)�2n � VAEtb(k). The VAEtb(k) captures the variance of analysts’ estimates of the target rate. Thus, we
control for the uncertainty over the central bank’s next policy steps.

At the news announcement date To indicate the day at the news announcement, we introduce a dummy variable Ntn(k) that
returns a value of 1 if tn(k) belongs to a day at the anticipated target rate announcement k and 0 otherwise. The extent of the
change in volatility on the announcement day may vary with respect to the level of volatility. During periods of higher mar-
ket volatility, a change in realized volatility of size 1 is relatively smaller than the same change during calmer volatility peri-
ods. Therefore, as before, we multiply event variables by RVtn(k)�1, e.g., the level of volatility one day before news
announcement day k.

� Ntn(k) � RVtn(k)�1. An extensive body of literature suggests that on the day of important news, asset volatility should
increase. Therefore, we expect a positive coefficient. However, the literature is salient on the comparison of the size of
the effect across countries. By using new data that cover the period of unconventional monetary policy, we also provide
evidence that controls for announcements; this also indicates quantitative easing. This provision is important because
most of the time, the news related to quantitative easing is announced during the scheduled target rate announcement
days.

� Ntn(k) � RVtn(k)�1 � Stn(k)
�. Since Giovannini and Jorion (1989), it has been understood that the direction of interest rate

changes may have a different impact on market volatility. However, our dataset contains historically extremely low
interest rates that are not present in the data sample of Giovannini and Jorion (1989). Therefore, we consider the
direction of the surprise the news provides relative to the average expected by the analyst. The variable is
Stn(k) = 100% � (new – expected)/expected, where ‘‘new” and ‘‘expected” refer to the revised target interest rate and
the median level of the target interest rate expected by analysts, respectively. To disentangle the direction, we define
Stn(k)

� = Stn(k) � I[new < expected], where I[.] is the indicator function returning 1 if the condition is true and 0 otherwise.
Finally, to consider the changing level of market volatility, we multiply the surprise variable Stn(k)

� by the volatility level
the day before the event. Because surprises should not be priced in the market, we expect that they should increase
market volatility. Because Stn(k)

� is negative, we expect that the coefficient at the interaction terms will be negative such
that the overall effect on volatility is positive.

Š. Lyócsa et al. / J. Int. Financ. Markets Inst. Money 58 (2019) 117–135 123

Chapter 5. Central bank announcements and realized volatility of stock markets in G7

countries
62



� Ntn(k) � RVtn(k)�1 � Stn(k)
+. As before, we control for the size and direction of the surprise element on the market, where Stn

(k)
+ = Stn(k) � I[new > expected]. Because Stn(k)

+ is positive, we expect that the coefficient at the interaction terms will be
positive such that the overall effect on volatility is positive. Comparing the two coefficients can be used to assess the mar-
ket’s asymmetric reactions to surprises regarding the monetary policy announcement.

After the news announcement date Obviously, if news at event k contained valuable information for the market, volatility
should increase on the new announcement day, whereas the next day, volatility should bounce back if there is no news of
such importance for the market to process. Because it is safe to assume that this occurrence is often the case, we should con-
trol for such (nearly determined) decreases in volatility the day after the announcement by introducing the DRta(k) dummy
variable with a value of 1 if ta(k) is a date one day after the announcement of the event k and 0 otherwise. After controlling
for sudden decreases in volatility, our key variable of interest is ANta(k)+1, which returns a value of 1 if ta(k) + 1 belongs to an
n-day window after the scheduled announcement of the event k and 0 otherwise. Note that we are capturing what occurs
from one day after the news announcement (ta + 1) until n-days after the news announcement. In the main text of this paper,
we report results for n = 5 days. Thus, we can more directly control for the overall net effect of the monetary policy
announcement on the stock market. As before, we also control for the level of volatility. As in the previous case for variables
on the announcement day, we again multiply the event variables by the level of volatility. To enable comparisons against
volatility before the news announcement, we multiply the event variables by the level of volatility one day before the news
announcement RVtn(k)�1, which was previously defined.

� DRta(k) � RVtn(k)�1. The variable controls for a sudden decrease in the level of volatility the day after the news
announcement.

� ANta(k)+1 � RVtn(k)�1. This variable is of central importance to the study because we are testing whether news announce-
ments led to a decrease or an increase in the overall level of market uncertainty. If the coefficient is negative, the news
announcement led to a short-term stabilization of the equity markets.

� ANta(k)+1 � RVtn(k)�1 � Stn(k)
�. The effect of a news announcement on market volatility during subsequent days may differ

with respect to the magnitude and direction of the surprise. This variable checks whether an unexpected reduction in the
target rate led to an increased (de)stabilization of volatility.

� ANta(k)+1 � RVtn(k)�1 � Stn(k)
+. In this case, we check whether an unexpected increase in the target rate led to changes in

volatility.

International development of rates News announcements by other relevant central banks may also influence stock market
volatility, both due to the direct effect and because monetary policy of central banks in one country may indicate future
monetary policy of other central banks. Controlling for the international development of target rates, i.e., whether foreign
central bank of interest have made announcements of target rates (or quantitative easing), leads to several forward chal-
lenges that lead to careful synchronization of the data. Although the news announcement of a foreign central bank was made
on the same calendar day as the local stock market is open, we consider the exact time when the news was released. The goal
of such synchronization is that we want the news to be attributed to the correct event. As before, we are interested in the
days before, on, and after the news announcement. We introduce count variables that sum the number of events across for-
eign central banks.

� BNWtb(k) � RVtb(k)�n�1,tb(k)�2n. Here, BNWtb(k) sums BNtb(k) across all remaining foreign central banks in the sample, if those
news occurred during the period n-days before event k on the local market. For example, let tb(k) be one day before the
anticipated news announcement on the U.S. stock market. If at the same time, tb(k) corresponds to one and three days
before the news announcement of the ECB and BOE, respectively, the variable BNWtb(k) is equal to 2.

� NWtn(k) � RVtn(k)�1. The variable NWtn(k) is a count variable, which sums Ntn(k) across all other markets but only if rate
announcements on other markets occurred during the trading hours of a given local market. To explain the market
level of volatility, the dummy variable is multiplied by RVtn(k)�1. Note that we expect a smaller positive coefficient on
NWtn(k) � RVtn(k)�1 compared to Ntn(k) � RVtn(k)�1 because monetary policy in other countries may be important but not
as important as the local policy.

� DRWta(k) � RVtn(k)�1. Volatility before the event announcement is multiplied by a count variable, which sums DRta(k) across
all other markets.

� ANWta(k)+1 � RVtn(k)�1. Volatility before the event announcement is multiplied by a count variable, which sums ANta(k)

across all other markets.

4.3.2. Quantitative easing
The effect of an unconventional monetary policy on the stock markets remains largely unknown. If central banks indicate

or engage in quantitative easing policies, markets may react, leading to increased market volatility. However, such events are
rare and not present for all markets in our sample. Nevertheless, these events can have a significant effect; we introduce sev-
eral event variables to control for these policy actions.
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4.3.2.1. Local monetary policy indication of quantitative easing.
� BQtb(k) � RVtb(k)�n�1,tb(k)�2n. QBtb(k) is a dummy variable with value of 1 if tb(k) is a date in an n-day window before news
announcement k, related to quantitative easing. As before, we report n = 5 in the main body of this research paper.

� Qtn(k) � RVtn(k)�1. Qtn(k) is a dummy variable with value of 1 if tn(k) is a date of news announcement k but only if it occurred
during the trading hours of the given stock market. We expect positive coefficients loading on the Qtn(k) variable because
quantitative easing may be perceived as a significant monetary policy direction for the whole economy.

� DRQta(k) � RVtn(k)�1. To explain the sudden decrease in realized volatility, we included the dummy variable DRQta(k), which
is equal to 1 one day after the event and 0 otherwise.

� AQta(k)+1 � RVtn(k)�1. To observe whether news related to QE has led to the decrease of realized volatility, we used a
dummy variable AQta(k)+1 with a value of 1 if t is a date in an n-day window after the news announcement k related to
quantitative easing.

4.3.2.2. International monetary policy on quantitative easing.
� BQWtb(k) � RVtb(k)�n�1,tb(k)�2n. BQWtb(k) is a count variable, which sums BQtb(k) across all other markets. As before, the main
idea is that monetary policy in other developed countries may indicate future monetary policy in the given country;
therefore, relevant news announcements of other central banks may have an effect on the local stock market.

� QWtn(k) � RVtn(k)�1. QWtn(k) is a count variable, which sums Qtn(k) across all other markets, but only if the rate announce-
ment in other markets occurred during the trading hours of a given market.

� DRQWta(k) � RVtn(k)�1. The count variable DRQWta(k) sums DRQta(k) across all other markets.
� AQWta(k)+1 � RVtn(k)�1. The count variable AQWta(k) sums AQta(k) across all other markets.

Certain variables were not used for all markets. For example, during the trading hours of the Japanese stock market, the
other stock markets in our sample are inactive. Therefore, the specification modeling realized volatility on the NIKKEI 225
excludes several news announcement variables of other markets (namely, NWtn(k) and QWtn(k)). Similarly, when modeling
the Canadian TSX, we do not have variables related to the QE in Canada, because during our sample period, QE was only con-
sidered in Canada, not actually employed.

4.3.3. Control variables
In the specification of Eqs. (2) and (6), dc coefficients are related to a set of control variables. The motivation for including

control variables is that other relevant events may be influencing the level of market volatility on a given day t. Therefore, all
control variables are not lagged, and it is assumed that they are exogenous with respect to market volatility.

Since changes in short-term interest rates and exchange rates can be perceived as a signal of monetary policy, we
included simple differences7 of 90-day money market interest rates denoted as DIRt and a logarithmic difference of a currency
index, which measures a currency’s appreciation/depreciation relative to the currencies of a country’s main trading partners and
is denoted as DFXt. We also included the squared return (DFX2t) to proxy the uncertainty levels on the foreign exchange mar-
ket, which may spill over to the equity market.

We have also included dummy variables for days of the week. In an influential paper, Andersen and Bollerslev (1998)
argue that the day-of-the-week effect on the foreign exchange market may be partly responsible for the clustering of volatil-
ity due to the clustering of macroeconomic news announcements on specific weekdays. We therefore introduce dummy
variables that are multiplied by the lagged realized volatility, i.e., RVt�1.

5. Results

5.1. Data and model characteristics

The time series of realized volatility for all the stock markets are plotted in Fig. 2. As we can observe, the volatilities of
different stock markets exhibit similar time patterns with increased volatility during the financial crisis and the debt crisis.
Note that downward spikes for the European STOXX-50 index can be explained by the non-trading of most weighted mar-
kets in Europe, i.e., the low levels of volatility are caused by smaller markets trading when big markets have a non-trading
day.

Descriptive statistics of the key variables are summarized in Tables 2.1 and 2.2. It is worth noting that the logarithmic
transformation of realized volatility was clearly useful. Although realized volatility is highly skewed (not reported here),
the logarithm of realized volatility (denoted as RV in Tables 2.1 and 2.2 and in the remainder of the paper) is less so, with
skewness not very different from zero. As is often the case in the finance literature, realized volatility shows a high level
of persistence: the lowest first-order autocorrelation was found for Japan, at 0.770. This finding supports our choice for mod-
eling volatility via an autoregressive model: the DHAR-GARCH model.

7 The use of simple differences instead of percentage changes is caused by the period of negative rates.
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As expected, the highest number of analysts covering rate announcements is for the FED. However, the variance of analyst
estimates appears to be small and based on the raw data; analysts often make the same predictions. In reality, surprises are
rare, as shown in Tables 2.1 and 2.2, column ‘‘#,” which shows the number of non-zero surprises. The surprises are reported
in a x100% scale and vary greatly primarily because of the low levels of interest rates at the end of our sample period, in
which a small deviation from the average of analyst’s expectation leads to large percentage changes.

5.2. Results for panel of all countries

Rate announcements do not occur often. For example, in Canada, the proportion of trading days when an announcement
event occurred was only 3.2%. In our sample period, quantitative easing announcements are naturally rare (see Tables 2.1
and 2.2). Consequently, the per-market estimators may not have the proper power to detect changes in realized volatility.
Instead, motivated by the mean group estimation literature, we first evaluate the results across all markets together. In
Table 3, we report the averages of coefficients and their significances using two aggregation techniques: the dynamic com-
mon correlated error model (DCCE, see Section 4.2.2) and the simple mean group (MG) estimator. The latter estimator is a
simple average, and the t-ratio is calculated from the per-market models (reported in Tables 4 and 5).

The results between the two estimation methods often differ; one notable exception is the results for the period before
the news announcement and for the effect of news related to quantitative easing. The results from the DCCE model led to a
more intuitive finding that increased uncertainty over the outcome of a news announcement that led to higher market
volatility before that news announcement. Simultaneously, volatility before a news announcement tends to be generally
smaller (‘‘calm before the storm” effect). The MG estimator led to insignificant coefficients with opposing signs. However,
the size of the effect estimated via DCCE is small. Because our dependent variable is the log of the realized variance, the
decrease of approximately 0.3% (before the news announcement) translates into an approximately 1.3% decrease in the real-
ized variance8.

At the news announcement, volatility increases, particularly if coupled with larger surprises, i.e., if there are a deviation
from market-wide expectations. The size of the effect is large because it corresponds to a 5.3% increase in the log of the real-
ized variance, i.e., �30.5% increase in the realized variance. Furthermore, surprises appear to be asymmetric, with market
volatility being much higher for rates below the anticipated values.

Based on the DCCE estimator, five days after the announcement, the estimated decline in the log of realized variance is
approximately 1%, which corresponds to an approximately 5% decrease in the realized variance. The decrease was not cap-
tured via the mean group estimator. In contrast to the observation made at the announcement date, surprises tend to be
associated with lower market volatility. However, the effect on volatility five days after the announcement is much smaller
than that during the announcement day.

When foreign central banks make announcements, our estimates suggest that volatility tends to increase slightly before
and on the news announcement days. After a news announcement, volatility tends to decline. These effects, although occa-
sionally significant, are small. For example, (for DCCE estimator) at the announcement day, the realized volatility increase is
approximately 0.6% (� 3% in realized variance); during the five-day period after the announcement, the decline tendency
caused by foreign central bank announcements is approximately 0.2% (� 1% in realized variance).

Fig. 2. Realized volatility.

8 In all these transformations, we are assuming an average level of realized volatility across all markets, i.e., 5.035.
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Interestingly, news related to quantitative easing led to a small decrease in realized volatility before and on the day of the
announcement (DCEE estimator) but only when reported by the domestic central bank. Conversely, if foreign central banks
reported initialization or continuation of the QE, volatility increased by 3.6%, which corresponds to a nearly 20% increase in
the realized variance; the latter effect has the same direction for both DCCE and MG estimators.

5.3. Results for individual countries

The individual market-level results are reported in Tables 4 and 5, and the key results are illustrated in Fig. 3. The esti-
mated results from the DHAR-GARCH models show that variables RVt�1, RVt�1,t�5 and RVt�1,t�22 explain the behavior of
volatility changes well, because they are often significant with strong effects. The results of diagnosis tests showed that
the error term should be modeled as an MA(1) process. This modeling is captured by the term et�1. Moreover, the error term
exhibited conditional heteroscedasticity; therefore, we model it as a GARCH model; see the variance equation in the lower
part of each table. For all stock markets except the U.S. and Canada, the GARCH(1,1) model is sufficient using our modeling
framework (see Section 4.2). The results of diagnostic tests (in the bottom of both tables) show that in most cases, residuals
from our models have satisfactory properties; one exception is the French CAC and Italy’s MIB market index’s volatility, for

Table 2.1
Descriptive statistics of key variables for United States, United Kingdom, Japan, and Canada.

United States Rate announcements 88, Quantitative easing indication 8

# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV 4.754 1.117 0.691 3.724 1.437 9.876 0.847
DRV 0.000 0.617 0.186 3.677 �2.420 2.647 �0.342
DIR � 100 �0.106 1.171 �2.114 25.902 �11.800 9.500 0.724
DFX � 100 0.006 0.344 0.142 6.624 �2.202 2.207 �0.003
DFX2 � 100 (annualized) 3.960 3.751 2.271 12.143 0.000 35.028 0.210
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.059 0.088 1.822 5.048 0.000 0.297 0.439
Ntn(k) � RVtn(k)�1 � Stn(k)

� 2 �4.225 37.356 �9.168 85.347 �350.005 0.000 �0.013
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 1 6.323 59.314 9.220 86.012 0.000 556.412 �0.012

United Kingdom Rate announcements 127, Quantitative easing indication 9

# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV 4.713 0.945 0.679 3.639 2.142 8.957 0.835
DRV 0.000 0.542 0.079 4.677 �3.343 3.065 �0.361
DIR � 100 �0.155 2.626 �25.171 1003.630 �106.500 21.250 0.316
DFX � 100 �0.008 0.484 �1.248 17.273 �6.200 2.185 0.097
DFX2 � 100 (annualized) 5.279 5.576 3.979 41.140 0.000 98.426 0.273
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.072 0.109 2.210 6.983 0.003 0.434 0.645
Ntn(k) � RVtn(k)�1 � Stn(k)

� 2 �1.490 14.935 �10.866 120.693 �167.000 0.000 �0.010
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 3 3.879 39.914 11.059 123.844 0.000 449.097 �0.010

Japan Rate announcements 100, Quantitative easing indication 5

# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV 4.983 0.900 0.801 4.398 2.605 9.042 0.768
DRV 0.000 0.612 0.567 6.314 �2.916 4.144 �0.351
DIR � 100 �0.094 1.155 �2.067 27.123 �11.800 9.500 0.718
DFX � 100 0.003 0.673 0.363 7.877 �3.674 4.807 �0.017
DFX2 � 100 (annualized) 7.494 7.619 2.523 13.852 0.000 76.314 0.211
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.022 0.025 1.002 2.568 0.000 0.073 0.614
Ntn(k) � RVtn(k)�1 � Stn(k)

� 2 �6.543 49.389 �8.123 70.646 �453.092 0.000 �0.018
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 2 5.701 43.072 8.136 70.875 0.000 395.532 �0.018

Canada Rate announcements 87, Quantitative easing indication 0

# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV 4.383 1.015 0.767 4.118 1.408 8.943 0.808
DRV 0.000 0.629 0.147 3.806 �2.378 3.294 �0.371
DIR � 100 �0.105 1.168 �2.081 25.974 �11.800 9.500 0.718
DFX � 100 �0.007 0.586 �0.110 6.476 �3.082 3.966 �0.048
DFX2 � 100 (annualized) 6.674 6.485 2.219 10.870 0.000 62.955 0.242
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.066 0.068 2.400 8.782 0.008 0.302 �0.164
Ntn(k) � RVtn(k)�1 � Stn(k)

� 5 �6.026 32.563 �6.514 48.024 �262.617 0.000 �0.035
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 2 1.549 10.797 7.413 58.997 0.000 91.365 �0.021

Notes: RV denotes realized volatility, DRV denotes the difference between two consecutive realized volatilities, DIR is the difference in the short-term
interest rate, and DFX is the log difference of the currency index. Column ‘‘#” denotes the number of non-zero surprises. AC1 is the level of the first-order
autocorrelation coefficient. Statistics for variables BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k); Ntn(k) � RVtn(k)�1 � Stn(k)� ; Ntn(k) � RVtn(k)�1 � Stn(k)+ are calculated only
for event days, i.e., when BNtb(k) = 1 or when Ntn(k) = 1.
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which Escanciano and Lobato (2009) test the suggested presence of conditional heteroskedasticity. However, the first-order
autocorrelation of squared residuals was very mild, at only 0.057 for the French market and 0.022 for the Italian market.

First, we discuss the impact of interest rate announcements in their respective countries. In Fig. 3, we illustrate the main
results, where it appears that during the 5-day period before the announcement, most of the time-realized volatility
decreases, except for the Japanese, Italian and European markets. However, except for Japan, changes in volatility before
news announcements do not appear significant.

On the announcement day, we observe that volatility of the stock market is increased in all the countries. This finding was
expected, and the effects are strong. The coefficients range from a 2.2% (U.K.) to a 9.4% (U.S.) increase in the log of the realized
variance compared to the levels of volatility one day before. Given the average level of the realized variances, this result cor-
responds to 10.9% (U.K.) and 54.8% (U.S.) increases in the realized variance. We further investigate the importance of the
interest rate surprise. To allow an asymmetric response to positive and negative surprises, we included the interaction terms
Nta(k) � RVta(k)�1 � Sta(k)

� and Nta(k) � RVta(k)�1 � Sta(k)
+. If surprises increase volatility, the coefficient for the first term should

be negative, and the coefficient for the second term should be positive. The expected signs were found for all countries
except for the U.S. and Canada. For the U.S., volatility decreases the greater the surprise effect and regardless of the direction
of the surprise, although surprises below expectations led to a larger volatility decrease. For Canada, target rates above
expectations decrease market volatility, whereas target rates below expectations increase market volatility (as expected).
The overall effect is illustrated in Fig. 3 and shows that for all the markets considered, volatility increases on the day of
the news announcement; this effect is largest for the U.S.

The first term in the panel ‘‘After interest rate meeting” in Tables 4 and 5, DRAta(k) � RVtn(k)�1, captures decreases in volatil-
ity immediately after the announcement day. We expected the coefficient to be negative and possibly close to the magnitude
of the coefficient capturing volatility changes at the day of the interest rate meeting. Although the coefficient is negative
across all markets, it is significant only for the U.S. and significant at the 10% level for Canada and Italy. However, we inter-
pret the negative coefficients to support our specification because failing to control for these declines may result in an over-
estimation of the decline in market volatility after the news announcement. In other words, a decrease in volatility from the

Table 2.2
Descriptive statistics of key variables for Europe, Germany, France and Italy.

Europe Rate announcements 121, Quantitative easing indication 2

# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV-STOXX 5.402 0.957 �0.142 7.587 �2.885 9.879 0.737
DRV-STOXX 0.000 0.694 0.645 29.939 �7.502 8.686 �0.396
DIR � 100 �0.105 1.168 �2.112 25.899 �11.800 9.500 0.725
DFX � 100 0.000 0.371 �0.322 8.521 �3.106 2.541 �0.020
DFX2 � 100 (annualized) 4.156 4.165 2.640 16.440 0.000 49.299 0.199
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.033 0.044 2.172 7.429 0.001 0.189 0.304
Ntn(k) � RVtn(k)�1 � Stn(k)

� 5 �10.759 63.236 �6.911 53.510 �553.172 0.000 �0.029
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 3 5.743 37.181 6.639 47.236 0.000 304.355 �0.024

Germany
# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV-DAX 5.334 0.924 0.518 3.743 2.522 9.557 0.806
DRV-DAX 0.000 0.576 0.168 4.048 �2.258 2.567 �0.363
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.033 0.045 2.320 8.287 0.001 0.204 0.300
Ntn(k) � RVtn(k)�1 � Stn(k)

� 5 �10.500 62.736 �7.074 55.662 �553.271 0.000 �0.029
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 3 5.548 36.018 6.649 47.345 0.000 295.464 �0.024

France
# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV-CAC 5.351 0.902 0.457 3.646 2.460 9.302 0.796
DRV-CAC 0.000 0.576 0.233 5.146 �2.278 3.497 �0.365
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.033 0.045 2.292 8.139 0.001 0.201 0.288
Ntn(k) � RVtn(k)�1 � Stn(k)

� 5 �10.359 60.990 �6.916 53.738 �536.778 0.000 �0.029
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 3 5.668 36.949 6.661 47.340 0.000 301.242 �0.024

Italy
# Mean Std.Dev. Skewness Kurtosis Minimum Maximum AC1

RV-MIB 5.358 0.930 0.306 3.154 2.847 9.156 0.804
DRV-MIB 0.000 0.582 0.002 3.582 �2.060 2.345 �0.358
BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k) 0.033 0.044 2.173 7.478 0.001 0.194 0.288
Ntn(k) � RVtn(k)�1 � Stn(k)

� 5 �10.663 63.161 �7.004 55.027 �558.770 0.000 �0.029
Ntn(k) � RVtn(k)�1 � Stn(k)

+ 3 5.819 37.687 6.576 45.901 0.000 300.283 �0.024

Notes: RV denotes realized volatility, DRV denotes the difference between two consecutive realized volatilities, DIR is the difference in the short-term
interest rate, and DFX is the log difference of the currency index. Column ‘‘#” denotes the number of non-zero surprises. AC1 is the level of the first-order
autocorrelation coefficient. Statistics for variables BNtb(k) � RVtb(k)�n�1,t�2n � VAEtb(k); Ntn(k) � RVtn(k)�1 � Stn(k)� ; Ntn(k) � RVtn(k)�1 � Stn(k)+ are calculated only
for event days, i.e., when BNtb(k) = 1 or when Ntn(k) = 1.
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event day to a subsequent day does not mean that volatility on the subsequent day is low; it is simply caused by a volatility
increase on the event day.

The possible stabilizing or destabilizing effect of a monetary policy news announcement on the stock market after the
news announcement is studied via the remaining three terms in the panel ‘‘After interest rate meeting” (Tables 4 and 5).
The coefficients for the term ANta(k) � RVtn(k)�1 are negative but insignificant for most countries. In other words, on average,
compared to the level of volatility before the event day, volatility 5 days after the interest rate announcement has not
decreased. Therefore, it appears that a monetary policy news announcement affects volatility only on the day of the
announcement and not during the period after the announcement. The coefficients related to the remaining two interaction
terms ANta(k) � RVtn(k)�1 � Sta(k)

� and ANta(k) � RVtn(k)�1 � Sta(k)
+ capture whether the response depends on the direction and

magnitude of the interest rate surprises. We find that surprises matter; however, their effect differs with respect to any given
market. For all markets except the U.K., interest rate surprises below expectations led to the stabilization of the market. Con-
versely, interest rates above expectations increased market volatility for the European markets, including the U.K., while
tending to reduce market volatility for the U.S., Canada, and Japan. Furthermore, the effect of surprises is small. For example,
the coefficient for surprises below expectations is estimated to be �0.116 for the U.K.; in addition, given the averages, the
effect on realized volatility is a decline of approximately 0.7%.

To answer our core research question of whether central banks’ announcements have a stabilizing or destabilizing effect
on stock markets, we have graphically summarized our results in Fig. 3. The average impact of central bank announcements
on volatility before and after the announcement appears to be mixed. In addition, note that compared to the day of the
announcement, the magnitude of the effect is much smaller for the before and after periods.

Table 3
Dynamic common correlated effects and mean group estimation.

DCCE MG

Constant 0.327*** 0.018***

et�1 MA term �0.278***

RVt�1 Lagged real. vol. �0.883*** �0.300***

RVt�1,t�5 Lagged weakly real. vol. 0.390*** 0.135***

RVt�1,t�22 Lagged monthly real. vol. 0.378*** 0.153***

DIRt�1 Lagged changes in inter. rate �0.002*** 0.001
DFXt�1 Lagged FX returns 0.019*** 0.031*

DFX2
t�1 Lagged squared FX returns �0.002*** 0.001

Mont � RVt�1 Monday effect �0.037*** �0.037***

Tuet � RVt�1 Tuesday effect 0.005*** 0.012***

Thut � RVt�1 Thursday effect 0.008*** 0.009***

Frit � RVt�1 Friday effect 0.002 0.000

Before interest rate meeting
BNtb(k) � RVtb(k)�n�1,tb(k)�2n � VAEtb(k) Uncertainty of the outcome 0.301*** �0.099
BNtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement �0.003*** 0.001

At interest rate meeting
Nta(k) � RVta(k)�1 Effect at the announcement 0.053*** 0.045***

Nta(k) � RVta(k)�1 � Sta(k)
�/100 Effect of a surprisingly lower rate �0.201*** �0.171***

Nta(k) � RVta(k)�1 � Sta(k)
+/100 Effect of a surprisingly higher rate 0.042*** �0.011

After interest rate meeting
DRta(k) � RVtn(k)�1 1-day effect after the announcement 0.001 �0.020***

ANta(k) � RVtn(k)�1 5-day effect after the announcement �0.010*** 0.000
ANta(k) � RVtn(k)�1 � Sta(k)

�/100 Effect of a surprisingly lower rate 0.054*** 0.049*

ANta(k) � RVtn(k)�1 � Sta(k)
+/100 Effect of a surprisingly higher rate �0.024 �0.021

International development of rates
BNWtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement 0.003*** 0.003***

NWtn(k) � RVtn(k)�1 Effect at the announcement 0.006** 0.007
DRWta(k) � RVtn(k)�1 1-day effect after the announcement 0.001 0.001
ANWta(k) � RVtn(k)�1 5-day effect after the announcement �0.002*** 0.000

Quantitative easing (QE)
BQtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement �0.029*** �0.010**

Qtn(k) � RVtn(k)�1 Effect at the announcement �0.004*** 0.032***

DRQta(k) � RVtn(k)�1 1-day effect after the announcement 0.040*** �0.057
AQta(k) � RVtn(k)�1 5-day effect after the announcement 0.009*** �0.005

International QE
BQWtb(k) � RVtb(k)�n�1,tb(k)�2n n-day effect before the announcement 0.015*** 0.005
QWtn(k) � RVtn(k)�1 Effect at the announcement 0.036*** 0.018*

DRQWta(k) � RVtn(k)�1 1-day effect after the announcement �0.007** �0.016***

AQWta(k) � RVtn(k)�1 5-day effect after the announcement 0.000 �0.004**

Average R2 31.5%

Note: Subscripts ***, **, *, denote significance at the 1%, 5%, and 10% significance levels, respectively. Bold values denote significance at least at the 10% level.

Š. Lyócsa et al. / J. Int. Financ. Markets Inst. Money 58 (2019) 117–135 129

Chapter 5. Central bank announcements and realized volatility of stock markets in G7

countries
68



Realized volatility in the stock markets also appears to be increasing during the days when interest rate announcements
are made by central banks in other countries. However, this effect is significant only in the U.K. and Canada. This result is
very intuitive. Canada has strong ties to the U.S., and the U.K. has strong ties to the EU; therefore, one would expect that
these countries will respond to announcement of foreign central banks. Most likely, Canada is strongly responding to FED
announcements, and the U.K. is strongly responding to ECB announcements.

Table 4
Individual models for the U.S., the U.K., Canada and Japan: DHAR-GARCH.

U.S. U.K. JP CA

Constant 0.028 0.020 0.017 0.020
et�1 MA term �0.379*** �0.310*** �0.410*** �0.278***

RVt�1 Lagged real. vol. �0.138*** �0.277** �0.186** �0.351***

RVt�1,t�5 Lagged weakly real. vol. 0.012 0.125 0.013 0.160***

RVt�1,t�22 Lagged monthly real. vol. 0.119*** 0.138*** 0.155*** 0.183***

DIRt�1 Lagged changes in inter. rate �0.005 0.008*** 0.001 0.006
DFXt�1 Lagged FX returns 0.066** 0.005 0.106*** �0.051
DFX2

t�1 Lagged squared FX returns �0.000 0.002 0.004** �0.000
Mont � RVt�1 Monday effect �0.035*** �0.046*** �0.014** �0.026
Tuet � RVt�1 Tuesday effect 0.016*** 0.014** �0.001 0.004
Thut � RVt�1 Thursday effect 0.000 0.017*** 0.008 �0.008
Frit � RVt�1 Friday effect �0.018** 0.008 0.005 �0.028**

Before interest rate meeting
BNtb(k) � RVtb(k)�n�1,tb(k)�2n � VAEtb(k) Uncertainty of the outcome 0.298 �0.185 �1.036 0.247
BNtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement �0.000 �0.002 0.007* �0.002

At interest rate meeting
Nta(k) � RVta(k)�1 Effect at the announcement 0.094*** 0.022* 0.022** 0.038**

Nta(k) � RVta(k)�1 � Sta(k)
�/100 Effect of a surprisingly lower rate 0.155** �0.376*** �0.016 �0.131**

Nta(k) � RVta(k)�1 � Sta(k)
+/100 Effect of a surprisingly higher rate �0.110*** 0.080*** 0.003 �0.199

After interest rate meeting
DRta(k) � RVtn(k)�1 1-day effect after the announcement �0.038*** �0.018 �0.012 �0.022*

ANta(k) � RVtn(k)�1 5-day effect after the announcement �0.006 �0.003 �0.000 0.006
ANta(k) � RVtn(k)�1 � Sta(k)

�/100 Effect of a surprisingly lower rate 0.102 �0.116** 0.110*** 0.073***

ANta(k) � RVtn(k)�1 � Sta(k)
+/100 Effect of a surprisingly higher rate 0.025* �0.090*** 0.041** 0.142

International development of rates
BNWtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement 0.003 0.002 0.003 0.003
NWtn(k) � RVtn(k)�1 Effect at the announcement �0.031 0.014* 0.060***

DRWta(k) � RVtn(k)�1 1-day effect after the announcement �0.001 0.003 �0.002 �0.008
ANWta(k) � RVtn(k)�1 5-day effect after the announcement 0.004 0.000 0.001 0.000

Quantitative easing (QE)
BQtb(k) � RVtb(k)�n�1,tb(k)�2n n-day effect before the announcement �0.001 0.004 0.007
Qtn(k) � RVtn(k)�1 Effect at the announcement 0.032 0.022 0.189***

DRQta(k) � RVtn(k)�1 1-day effect after the announcement �0.043** 0.012 �0.035
AQta(k) � RVtn(k)�1 5-day effect after the announcement �0.004 �0.009 �0.0165

International QE
BQWtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement 0.012* 0.001 0.010* 0.010
QWtn(k) � RVtn(k)�1 Effect at the announcement 0.024 0.082**

DRQWta(k) � RVtn(k)�1 1-day effect after the announcement 0.007 �0.001 �0.040** �0.021
AQWta(k) � RVtn(k)�1 5-day effect after the announcement �0.011 0.001 �0.003 0.002

GARCH
x Constant �0.034 0.049 0.001 �0.128**

a Effect of the lagged error term 0.031** 0.088** 0.040** 0.063***

b Effect of the lagged latent volatility 0.974*** 0.676*** 0.923*** 0.800***

c Asymmetric coefficient 0.087 0.058*

k Skewness parameter 0.940*** 0.257** 0.883*** 0.329***

1 Kurtosis parameter 2.859*** 2.062*** 2.009*** 2.370***

Diagnostics
Log-likelihood �2108.90 �1653.54 �1878.51 �2098.79
Bayesian information criterion 1.66 1.32 1.54 1.65
Sign bias test (joint effect) 0.78 0.23 0.43 0.72
Escanciano and Lobato (2009) test of autocorr. of std. res. (up to 5 lags) 0.89 0.80 0.49 0.80
Escanciano and Lobato (2009) test of autocorr. of squared std. res. (up to 5 lags) 0.55 0.38 0.14 0.15
Correlation between fitted and observed values 0.56 0.49 0.53 0.50
Number of observations 2747 2719 2728 2626

Note: Subscripts ***, **, and * denote significance at the 1%, 5%, and 10% significance levels, respectively. Significances are based on standard errors, as in
White (1982). Bold values denote significance at least at the 10% level.
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The volatility five days before foreign central banks’ announcements is not influenced by these announcements except for
the U.S., which has a slight increase in market volatility during the 5-day window before the event. Similarly, we do not
observe a change in volatility five days after the announcement, except for the Eurozone, where volatility decreases.

Next, we discuss how news related to policy announcements about quantitative easing influenced stock market volatility.
On the day of the announcements, realized volatility increased; although in many cases, the size of the coefficients was com-
parable to the size estimated for interest rate announcements, a significant increase is found only for Japan. This result is in

Table 5
Individual models for European markets: DHAR-GARCH.

EU DE FR IT

Constant 0.004 0.007 0.012 0.036
et�1 MA term �0.206* �0.252*** �0.180* �0.208**

RVt�1 Lagged real. vol. �0.369*** �0.318*** �0.405*** �0.358***

RVt�1,t�5 Lagged weakly real. vol. 0.204* 0.146* 0.235** 0.184**

RVt�1,t�22 Lagged monthly real. vol. 0.153*** 0.162*** 0.158*** 0.159***

DIRt�1 Lagged changes in inter. rate �0.004 �0.002 �0.000 �0.004
DFXt�1 Lagged FX returns 0.027 0.026 0.044* 0.028
DFX2

t�1 Lagged squared FX returns �0.001 0.000 �0.001 0.001
Mont � RVt�1 Monday effect �0.040*** �0.040*** �0.042*** �0.048***

Tuet � RVt�1 Tuesday effect 0.009 0.013** 0.015** 0.022***

Thut � RVt�1 Thursday effect 0.016*** 0.013** 0.014*** 0.008
Frit � RVt�1 Friday effect 0.008 0.005 0.013** 0.009

Before interest rate meeting
BNtb(k) � RVtb(k)�n�1,tb(k)�2n � VAEtb(k) Uncertainty of the outcome 0.027 0.077 0.084 �0.303
BNtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement 0.001 �0.001 �0.000 0.003

At interest rate meeting
Nta(k) � RVta(k)�1 Effect at the announcement 0.044*** 0.049*** 0.040*** 0.052***

Nta(k) � RVta(k)�1 � Sta(k)
�/100 Effect of a surprisingly lower rate �0.276*** �0.200** �0.290*** �0.234***

Nta(k) � RVta(k)�1 � Sta(k)
+/100 Effect of a surprisingly higher rate 0.060 0.000 0.060 0.009

After interest rate meeting
DRta(k) � RVtn(k)�1 1-day effect after the announcement �0.018 �0.015 �0.013 �0.024*

ANta(k) � RVtn(k)�1 5-day effect after the announcement �0.001 0.002 0.001 �0.005
ANta(k) � RVtn(k)�1 � Sta(k)

�/100 Effect of a surprisingly lower rate 0.055*** 0.073*** 0.073*** 0.027*

ANta(k) � RVtn(k)�1 � Sta(k)
+/100 Effect of a surprisingly higher rate �0.078** �0.071*** �0.080*** �0.057**

International development of rates
BNWtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement 0.003 0.002 0.003 0.004
NWtn(k) � RVtn(k)�1 Effect at the announcement 0.004 0.002 0.003 0.001
DRWta(k) � RVtn(k)�1 1-day effect after the announcement 0.005 0.004 0.002 0.005
ANWta(k) � RVtn(k)�1 5-day effect after the announcement �0.002 �0.000 �0.002 �0.003

Quantitative easing (QE)
BQtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement �0.019 �0.016 �0.019* �0.024***

Qtn(k) � RVtn(k)�1 Effect at the announcement 0.007 0.043 0.038 0.049
DRQta(k) � RVtn(k)�1 1-day effect after the announcement �0.086 �0.155 �0.135 �0.179***

AQta(k) � RVtn(k)�1 5-day effect after the announcement �0.005 0.014 �0.000 0.019

International QE
BQWtb(k) � RVtb(k)�n�1,tb(k)�2n 5-day effect before the announcement 0.009 0.009 0.009 0.007
QWtn(k) � RVtn(k)�1 Effect at the announcement �0.001 �0.003 �0.002 0.014
DRQWta(k) � RVtn(k)�1 1-day effect after the announcement �0.014 �0.013 �0.013 �0.030
AQWta(k) � RVtn(k)�1 5-day effect after the announcement �0.008 �0.004 �0.009 0.001

GARCH
x Constant 0.105* 0.018 0.020 0.015**

a Effect of the lagged error term 0.169*** 0.063*** 0.067*** 0.046***

b Effect of the lagged latent volatility 0.458* 0.863*** 0.848*** 0.894***

c Asymmetric coefficient
k Skewness parameter 0.113 0.560*** 0.224** 0.662***

1 Kurtosis parameter 1.588*** 2.392*** 1.929*** 2.866***

Diagnostics
Log-likelihood �1966.24 �1851.22 �1799.26 �1889.68
Bayesian information criterion 1.54 1.45 1.40 1.49
Sign bias test (joint effect) 0.36 0.28 0.02 0.01
Escanciano and Lobato (2009) test of autocorr. of std. res. (up to 5 lags) 0.89 0.92 0.99 0.71
Escanciano and Lobato (2009) test of autocorr. of squared std. res. (up to 5 lags) 0.55 0.52 0.04 0.03
Correlation between fitted and observed values 0.56 0.56 0.53 0.54
Number of observations 2747 2747 2744 2770

Note: Subscripts ***, **, and * denote significance at the 1%, 5%, and 10% significance levels, respectively. Significances are based on standard errors, as in
White (1982). Bold values denote significance at least at the 10% level.
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contrast to the results achieved via the DCEE model. Therefore, it appears that when controlling for common factors, the
effect of the QE on market volatility diminishes. The quantitative easing of foreign central banks increases volatility in
Canada. After controlling for possible one day declines in realized volatility (DRQta(k) � RVtn(k)�1 variable), we did not observe
a significant increase or decrease in volatility after quantitative easing announcements; the only difference was the reaction
of the U.S. stock market.

5.4. Sensitivity checks

To determine whether our results are robust with regard to the model and the variable specification, we performed two
sensitivity checks. First, we estimated the HAR-GARCH models that differ with regard to Eq. (2) only in that the dependent
variable is the level of realized volatility instead of the difference. Second, our choice for studying 5 days before and 5 days
after the news announcement is arbitrary. Therefore, we should study our key results while considering other choices for
specifying before and after event windows. Thus, we also increase our understanding of the effect of the target interest rate
announcement on stock market volatility. We study the following choices of n, n = {3, 7, 9}.9

First, the HAR-GARCH model provided qualitatively very similar results to the baseline DHAR-GARCH model. More
variability in the results is observed when the length of the period before and after the event changes. For the shorter
period of n = 3 days, the effects become slightly stronger. There is more evidence that volatility declines before and after
the news announcement. However, the effects are small. For example, in the DCCE model, realized volatility declines
0.43%, which corresponds to an approximately 2% decline in the realized variance. In the period after the news announce-
ment, volatility declined 1.18%, i.e., 5.8% in the realized variance. For longer time periods, n = {7, 9} the effects declined in
magnitude.

Similar findings were observed when the DHAR-GARCH model was fitted for individual markets. For example, small sig-
nificant declines in realized volatility for the before and after period were now estimated for the U.S.; for the EU and the
German stock markets, significant declines in realized volatility were found for the after period.

5.5. Results for implied volatility

In order to check whether our reasoning about the differences between realized and implied volatility is supported in an
empirical setting, we re-estimate the same country-level models as those reported in Tables 4 and 5. The dependent variable,

Fig. 3. Effects before/the day of/after the interest rate announcement on the DRVt. Notes: All effects are calculated only for the corresponding event period
using Eq. (2) and the estimated coefficients from Tables 4 and 5. In the case of the before period, we calculated j1

* � (BNtb(k) � RVtb(k)�n�1,tb(k)�2n � VAEtb(k))
+ j2

* � (BNtb(k) � RVtb(k)�n�1,tb(k)�2n) only for dates that fall into the ‘‘before interest rate meeting,” where jj
* are estimated coefficients. The resulting effects

are plotted as boxplots. At the event day, the plotted values originate from j3
* � (Nta(k)� RVta(k)�1) + j4

* � (Nta(k)� RVta(k)�1� Sta(k)� ) + j5
* � (Nta(k)� RVta(k)�1� Sta(k)+ ),

and for after the event day period, the values are j6
* � (ANta(k) � RVtn(k)�1) + j7

* � (ANta(k) � RVtn(k)�1 � Sta(k)� ) + j8
* � (ANta(k) � RVtn(k)�1 � Sta(k)+ ).

9 The results from Sections 5.4 and 5.5 are available upon request.
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the difference in realized volatility is substituted by the difference in implied volatility. We hypothesized that implied
volatility should decline at the news announcement day. The results show a mild decrease in implied volatility on announce-
ment day for the U.S., U.K., and Canada, while for other countries the effect is insignificant. After the announcement day, the
results are mixed. For sake of brevity are these results not reported in the paper.

6. Conclusion

In this paper, we investigated the impact of monetary policy announcements on the volatility of stock markets in G7
countries. Monetary policy announcements are part of the most important macroeconomic news. Unsurprisingly, significant
research has been devoted to the study of these events. However, the research analyzing the impact of these events on stock-
market volatility is relatively scarce, particularly with respect to cross-country studies and studies that utilize the precise
volatility measure of the realized volatility that is calculated from high-frequency data. Therefore, we analyze a broad data
sample covering five central banks and stock markets in the U.S., Canada, Japan, the U.K., Germany, France, Italy and the
Eurozone as a whole.

Previous studies have analyzed the impact of news announcements on the volatility of financial markets utilizing either
GARCH models or implied volatility. However, GARCH models are based on one price observation per day, and therefore,
they cannot precisely estimate volatility. Implied volatility is unsuitable for this purpose for another reason. On the day
of a scheduled macroeconomic announcement, daily values of implied volatility should decrease simply because they cap-
ture volatility over the ensuing 30-day time period, i.e. news is excluded as it was announced before the closing value of the
implied volatility index. Therefore, if the event day is associated with increased volatility, by observing a decrease in implied
volatility, we cannot conclude whether this event has a stabilizing or a destabilizing impact on volatility during the subse-
quent days.

To avoid both these obstacles, we utilize realized volatility calculated from high-frequency data. High-frequency data
have previously been used in connection with monetary policy announcements to evaluate the immediate impact of these
announcements. In addition to immediate one-day impact, we study also the impact of these events on realized volatility
five days before, five days after and the day of an announcement. We control for fluctuations in the short-term money mar-
ket, the foreign exchange market, and the day-of-the week effects; we also control for the uncertainty of the incoming target
rate announcement, the effect of surprises, news related to the initiation or continuation of quantitative easing, and
announcements related to foreign central banks’ quantitative easing and target interest rates.

Some previous studies have found either a decline (Bomfim, 2003) or an increase (Bauwens et al., 2005) in market volatil-
ity before the news announcement. Our results do not support any of these claims. We assumed that volatility on the day of
the announcement should be high, and our models confirm this assumption with significant results. This finding suggests
that the information content of interest rate news is high (Chae, 2005). This result is in accordance with Balduzzi, Elton,
and Green (2001), Evans and Speight (2010b), and Hussain (2011). With regard to volatility behavior after the announcement
day, we found evidence of a small stabilizing effect (i.e. volatility decrease) of scheduled interest rate announcements on
stock markets; thus, our results contrast with the existing literature (that uses implied volatility), which found strong sta-
bilizing effects. We also contribute to the literature in that we control for the effect of monetary policy interconnectedness or
coordination by including news announcement from foreign central banks (interest rate and quantitative easing). Here our
results regarding the effect of scheduled news announcements from foreign central banks are also somewhat weaker com-
pared with the earlier findings of Nikkinen and Sahlstr}om (2004) and Nikkinen et al. (2006), as we found that this relation-
ship is usually not very significant at the country level, only when a dynamic common correlated effect model is used.
Specifically, we can derive the following conclusions that hold in general:

� Volatility increases on the day of an announcement. Such increases are significant not only in statistical terms but also in
economic terms as the increases range from 2.2% (U.K.) to a 9.4% (U.S.). Using the DCCE model, volatility was estimated to
be 5.3% in the log of the realized variance (�10.9%, 54.8% and 30.5% increases in realized variance, respectively). The
volatility increases higher when the surprise for the market is greater.

� There is some evidence that monetary policy announcements related to target interest rates have a stabilizing effect on
the market during the 5-day period after an announcement. Using the DCCE model, the decline of the log of the realized
variance was estimated at approximately 1%, which corresponds to approximately 5.1% in the realized variance. At the
individual market level, the changes of the log of the realized variance range from +0.6% (Italy, Canada) to �0.6% (U.
S.). When the surprise effect on the policy announcement day is larger, market volatility tends to decline more in the days
following the announcement.

� Foreign central banks’ announcements about interest rates are positively associated with changes in the local market’s
volatility (DCCE panel model); however, at the individual market level, these changes are rarely significant (exceptions
are the U.K. and Canada).

� We have also studied news related to the initialization or continuation of quantitative easing policies. The results indicate
that on average, quantitative easing announcements did not have an impact on the volatility of stock markets in G7
countries.
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a b s t r a c t

This paper investigates volatility forecasting for crude oil and natural gas. The main objective of our
research is to determine whether the heterogeneous autoregressive (HAR) model of Corsi (2009) can be
outperformed by harnessing information from a related energy commodity. We find that on average,
information from related commodity does not improve volatility forecasts, whether we consider a
multivariate model, or various univariate models that include this information. However, superior
volatility forecasts are produced by combining forecasts from various models. As a result, information
from the related commodity can be still useful, because it allows us to construct wider range of possible
models, and averaging across various models improves forecasts. Therefore, for somebody interested in
precise volatility forecasts of crude oil or natural gas, we recommend to focus on model averaging instead
of just including information from related commodity in a single forecast model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Crude oil and natural gas have been known tomankind for a few
thousand years. However, their importance was negligible until the
middle of the nineteenth century, when crude oil refinement was
developed. Since this time, the importance of these commodities
has significantly increased.

Because it can be easily transported, crude oil has rapidly
become a globally traded commodity. Conversely, the trans-
portation of natural gas is more complicated. As a result, several
fragmented markets instead of a single market exist for natural gas.
The price of natural gas varies significantly by location; its price is
often set in relation to the price of oil. Due to technological progress
in the transportation and extraction of natural gas from uncon-
ventional sources (shale gas), natural gas is becoming an increas-
ingly important global commodity. Since worldwide reserves of
natural gas are estimated to persist for a substantially longer period
of time than oil reserves, natural gas may become amore important
commodity than crude oil.

Understanding and forecasting the volatility of oil and gas is
crucial for risk management, hedging purposes, cost management
for oil and gas consumer/customers, and policy makers. For
example, investors may target certain risk levels, which are influ-
enced by the forecasted level of volatility. Volatility is important for
pricing financial derivatives. Risk managers may monitor levels of
expected value at risk, which can be calculated based on forecasted
volatility. Commodities are often uncorrelated or even negatively
correlated with equity markets [1e6]; and [7] and therefore can be
employed to diversify investment portfolios. As a result, investors
are becoming increasingly more interested in understanding and
forecasting the volatility of commodities. Price volatility impacts
the costs of companies. When the volatility of prices is greater, the
financial planning is less reliable. Consequently, oil price shocks or
the volatility of oil prices may influence stock markets [8e10].
Policy makers are interested in energy price volatilities because
shocks to these important commodities tend to influence the real
economy; for some countries, the total output of the economy is
substantially dependent on oil and gas prices and their volatility
[11,12].

The main research objective of this study is to determine
whether volatility forecasts of oil and natural gas prices based on
the heterogeneous autoregressive (HAR) model of Corsi [13] which
is known to perform very well, can be outperformed by harnessing
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information from a related energy commodity. We perform this
evaluation using the two commodities. We either include infor-
mation from the previous volatility of the other commodity in the
volatility forecasting models (univariate models) or we jointly
forecast the two volatilities (multivariate model) by exploring their
likely contemporaneous dependence. Because practitioners face
model choice uncertainty, we also compare our forecasts with the
forecasts provided by combined forecasts.

Common economic sense dictates that natural gas and oil prices
should be related. In many instances, they are employed for similar
purposes; therefore, they are substitutes. However, natural gas
cannot be transported and stored as easily and as cheaply as oil. For
a long time, oil used to be a global commodity, whereas natural gas
used to be traded and priced locally, often in a relation to the oil
price. However, approximately 15 years ago, large improvements in
hydraulic fracking emerged. Hydraulic fracking is a technology
which allows extraction of natural gas from resources where it was
previously not possible. Large increase in supply of natural gas
caused decoupling of oil and gas prices and transformed the gas
market tremendously, from a highly fragmented market to a global
market. Since natural gas is becoming a global commodity, under-
standing and forecasting its volatility have become increasingly
important. However, whether information from oil market can
improve forecasts of the gas volatility, and vice versa, is an empir-
ical question which has not been addressed in the literature
adequately.

Several studies have investigated the empirical relationship
between the price of natural gas and the price of oil. According to
Batten et al. [14]; the relationship between oil and natural gas is
unstable; however, the majority of empirical studies report that oil
leads natural gas. Batten et al. [14] have discovered that the rela-
tionship between oil and natural gas has weakened particularly
after 2006/2007. They obtained somewhat surprising resultsdna-
tural gas tends to lead the oil market. The long-term relationship
between natural gas and oil was examined by Brigida [15] using a
regime-switching model that allows changes in the long-term
relationship (cointegration) between natural gas prices and oil
prices. Brigida [15] argues that the time-varying relationship be-
tween oil and natural gas may be attributed to changes in the
equilibrium states between the prices of the two commodities.
Similarly, Caporin and Fontini [16] explore the long-run relation-
ship between oil and natural gas and the changes in the long-term
relationship when shale gas production arrived in the market. They
discover not only that shale gas has a negative impact (as expected)
on gas prices but also that the role of oil in the price formation of
natural gas increased. Ramberg and Parson [17] challenge the ex-
istence of the long-term relationship between natural gas and oil
and attribute the changes in their relationship to the fact that
natural gas exhibits large short-term volatility. In a recent study,
Bunn et al. [18] explored the dependence on the development of
prices of U.S. oil and gas futures and discovered that the two
commodity futures are connected and their connectedness in-
creases when investors tend to make speculative bets and de-
creases when hedging activity increases.

Due to its importance, oil volatility has been the focus of many
studies. The most common approach is to use a generalized
autoregressive conditional heteroscedasticity (GARCH) type model
that is based on daily data [19e23] to forecast oil volatility. Lin and
Wesseh [24] studied the volatility of natural gas within a general-
ized autoregressive conditional heteroscedasticity (GARCH) frame-
work and linked volatility shocks to major demand and supply
shocks related to geopolitical, technological and natural events.
Chan and Grant [25] modeled the volatility of several commodities,
such as a series of oil and natural gas price returns, using GARCH
and stochastic volatility models. They revealed that stochastic

volatility models tend to outperform GARCH models, asymmetric
volatility is important for the oil price volatility, and models that
control for sudden changes in returns (jumps) are important for
both oil and natural gas volatility models. GARCH models are also
utilized by van Goor and Scholtens [26] who assess whethermarket
fundamentals can explain the volatility of natural gas.

The majority of existing studies about modeling or forecasting
volatility on energy markets is based on multivariate GARCH
models, which are based on daily price data, e.g., Chang et al.
[27,28]; Efimova and Serletis [29]. Alternatively, Vo [30] utilizes a
stochastic volatility model and discovers that previous volatility on
the stock market (oil market) improves volatility predictions on the
oil market (stock market). However, compared with the GARCH
models that are based on daily data, the realized volatility (RV)
calculated from high-frequency data [31] generates more precise
volatility models.1 These models have been applied not only to
stock markets [32] and exchange rates [33,34] but also to com-
modities [35], particularly oil and natural gas [12,36e38]. However,
the interplay between the volatility of natural gas and the volatility
of oil has not been explored. One exception is Degiannakis and Filis
[39]; who suggest that HARmodels of oil volatility augmented with
exogenous volatilities from different asset classes usually outper-
form the standard HAR model. However, natural gas volatility
proved to have minimal impact on the volatility of oil.

In this study, we contribute to this new strand of literature as we
empirically explore whether the link between oil and natural gas
can be exploited when forecasting the day-ahead volatility of these
two energy commodities. We employ models that exploit not only
the cross-lagged connectedness between related assets but also
their contemporaneous dependence. We utilize the concept of
realized volatility to forecast the volatility of crude oil and natural
gas and determine whether the multivariate Generalized Heter-
ogenous Autoregressive (GHAR) model of �Cech and Baruník [40];
which includes the joint estimation of oil and gas volatilities and
dependence, performs better than its univariate counterpartdthe
HAR model of Corsi [13].

Our second contribution is our focus on the combined forecasts
from several models, whereas the majority of existing studies
either apply a particular volatility model or compare several
models. We assess whether the previous volatility (or its compo-
nent) of a related commodity helps to increase the accuracy of the
volatility forecasts. Volatility components, such as semi-variances,
continuous and jump components, asymmetric volatility compo-
nents, non-trading day terms, and measurement errors of the
realized volatility are utilized.

Our third contribution is our study of the volatility of the two
largest oil and gas exchange traded funds (ETF)dthe United States
Oil Fund and the United States Natural Gas Funddalthough the
majority of the existing literature concerns the volatility of oil and
gas futures. Both of these funds have existed for almost ten years;
their popularity and importance are rapidly increasing. A study
based on exchange traded products complements the existing
literature. Since both ETFs that we study primarily invest in futures
contracts, the direct use of ETFs and futures contracts would likely
lead to similar results. However, ETFs have two advantages. First,
unlike futures contracts, ETFs have no pre-specified expiration date
and are continuously traded. In the case of a futures time series, the
data over multiple years are not one-time series. This long-term
time series is always created from several futures contracts,

1 Another alternative approach to GARCH and stochastic volatility models, which
are both based on daily observations of prices, is the use of implied volatility, as
suggested by e.g. Liu et al. [78]. However, an implied volatility index for natural gas
does not exist.
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usually the most liquid contracts. A researcher often makes arbi-
trary choices about rollover dates. Therefore, some artificial effects
are possible, for example, volatility may increase of decrease prior
to a rollover. The use of exchange traded funds is more convenient
and removes an arbitrary choice of rollover dates from a researcher.

Our results have implications for the volatility transmission
literature as we study how lagged volatility of the related com-
modity is related to out-of-sample volatility forecasts of another
commodity. Our results suggest that the two markets are related,
but harnessing information from related commodity does not
improve volatility forecasts much. Contemporaneous dependence
among volatilities is not useful in an out-of-sample framework.
However, significant and consistent improvements in forecasting
accuracy are recorded when combination forecasts are considered.

The remainder of the paper is organized as follows: section 2
describes the data, section 3 explains the methodology, section 4
presents the results, and section 5 presents the conclusion.

2. Data

We employ high-frequency data from the Trade and Quote
(TAQ) database (consolidated trades) to forecast the realized vola-
tility from 9:30 a.m. to 4:00 p.m. for two commodity ETFs: Natural
Gas (United States Natural Gas - UNG) and Oil (United States Oil -
USO). Both commodities were issued by the United States Com-
modity Funds. In terms of size, both ETFs are the largest among
their competing peers. The UNG is an ETF that offers exposure to
natural gas futures (near-month future contracts), and the USO is
exposed to WTI crude oil futures.

Our sample covers the period from January 2008 to December
2014. The start of our sample was chosen because the inception of
the UNG ETF was in 2007, and the inception of the USOwas in 2006.
The end of our dataset corresponds to the available data in the TAQ
database at the time of our analysis. Our forecasting analysis begins
with the first out-of-sample data from early 2010 because previous
data are used to estimate initial forecasting models in the rolling
window scheme employed in this study.

High-frequency data may be subject to unknown errors (wrong
entries) or missing data, which may influence our analysis. There-
fore, our first step was performing the following data-cleaning
procedures:

1) From the downloaded data, all entries outside of the trading
window, i.e., before 9:30 a.m. and after 4:00 p.m. on a given
calendar day, were removed.

2) Zero price entries were removed.
3) Ten-minute sampling frequencywas performed; the last price in

a given sampling window (40 price observations per trading
window) was stored.

4) If more than 20% of the observations in a given trading day were
missing, the trading day was removed.

5) If more than 10% of the consecutive observations in a given
trading day were missing, the trading day was removed.

6) Missing values in a sampling window from 9:30:00 a.m. until
9:39:59 a.m. were inputted using the first known price on a
given trading day. Missing values in a sampling window from
3:50:00 p.m. until 3:59:59 p.m. were inputted using the last
known price on a given trading day.

7) All other remaining missing values were inputted using linear
interpolation methods.

8) Prior to the analysis, both ETFs (UNG, USO) were synchronized
across trading days via a list-wise deletion to ensure that our
results can be compared across univariate and multivariate
models.

The trading day constitutes of 6.5 h of trading. We employ a 10-
min sampling frequency that yields N¼ 39 sampling windows.
Recording the opening price (at j¼ 1) and subsequent last prices of
the 39 sampling windows generates 40 prices for a trading day. Let
Pt,j denote the value of the ETF,where t is a given day, and j is a given
intraday sampling window. The continuous intraday return is
defined as

rt;j ¼ ln

 
Pt;j
Pt;je1

!
(1)

where Pt,j is the price of the j-th sampling window, and j¼ 0,1,
…,39. The use of 10-min sampling windows is a compromise be-
tween the possible effect of market microstructure noise on our
volatility estimates and the precision of our estimate. Our choice of
a 10-min sampling windowwas motivated by the fact that ETFs are
relatively new financial assets, with a recent inception date, which
might cause smaller liquidity, particularly at the beginning of our
series. The employment of the more popular 5-min sampling fre-
quency would therefore produce many intraday “data-holes”,
particularly at the beginning of our sample period of the natural gas
ETF.

Our main quantity of interest is the intraday realized volatility,
which is defined as follows:

RVt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
252

XN
j¼1

r2t;j

vuut (2)

We model the annualized (multiplication coefficient of 252)
realized volatility instead of the realized variance (the square of
realized volatility). Due to the extreme skewness and non-
normality, the empirical literature usually prefers direct modeling
the log of realized variance instead of realized variance. Our choice
of realized volatility is attributed to the fact that factors from
decomposed Cholesky variance-covariance matrices, which are
similar in scale to the realized volatility, are being modeled in the
GHAR model of �Cech and Baruník [40].

The data-cleaning and synchronization procedures yielded data
for 1753 trading days (68,367 return observations). After calcu-
lating the variables of interest and estimating initial forecasting
models, 627 out-of-sample forecasts remained.

3. Methodology

One-day-ahead volatility forecasts for USO and UNG are inves-
tigated within the univariate [13] and multivariate HAR models
[40]. First, in the empirical part, we demonstrate that our bench-
mark HAR model was rarely outperformed by more sophisticated
univariate models. Even inclusion of the lagged realized volatility
from the strategically linked commodity market has not improved
volatility forecasts. Second, we demonstrate that multivariate HAR
models outperform univariate models, including the benchmark.
Last, we construct combination forecasts from univariate models
and volatility forecasts that are not worse than the multivariate
HAR forecasts. The following subsections describe our forecasting
equations and variables, including criteria (loss functions) and
procedures for comparing competing volatility forecasts.

3.1. Univariate heterogeneous autoregressive models

3.1.1. The benchmark model
Our benchmark model is the HAR model of Corsi [13]; which is

extensively employed in the literature because it is significantly
simpler than the GARCH model of Bollerslev [41]. Due to utilization
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of realized volatility calculated from high-frequency data, its fore-
casts of intraday volatility tend to be significantly better. The HAR
model has the following structure

RVtþ1 ¼ b1 þ b2RVt þ b3RVt;t�4 þ b4RVt;t�21 þ et (3)

where RVtþ1 is the realized volatility at the t þ 1 trading day,
regressed on the realized volatility of the previous trading day RVt,
the averageweekly realized volatility RVt,te4¼ (RVtþRVt-1þ…þRVt-

4)/5, and the averagemonthly realized volatility RVt,te21¼ (RVtþRVt-

1þ … þRVt-21)/22. According to Corsi [13]; the inclusion of weekly
and monthly average realized volatilities should conveniently
capture the long-memory dependence, which is often observed for
volatility, including oil price volatility [42]. Compared with the
GARCH models, HAR models are simply estimated via the ordinary
least squares method.

3.1.2. Good news and bad news model: realized semi-variances
According to several papers, considering positive and negative

semi-variances (defined below) may improve the in- or out-of-
sample forecasting performance [23,43]. To capture this asym-
metric volatility, we follow the recent work of Patton and Sheppard
and employ positive and negative semi-variances:

RV2 �ð Þ
t ¼

XN
j¼1

r2t;j � I
�
rt;j <0

�

RV2 þð Þ
t ¼

XN
j¼1

r2t;j � I
�
rt;j � 0

� (4)

In Eq. (4), RVt
(�) is the negative semi-variance and RVt

(þ) is the
positive semi-variance, where I(.) is the indicator function that
returns the value of 1 if the condition applies and returns the value
of 0 otherwise. One method of using semi-variances in HARmodels
is to add the signed jump, which is the difference between a pos-
itive semi-variance and a negative semi-variance [44]. Because we
are using realized volatilities, our measure of signed jumps SJt is
defined as follows:

SJt ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RV2 þð Þ

t � RV2 �ð Þ
t

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RV2 �ð Þ

t � RV2 þð Þ
t

q ;RV2 þð Þ
t � RV2 �ð Þ

t >0
;RV2 þð Þ

t � RV2 �ð Þ
t <0

(5)

Adding lagged signed jumps in Eq. (3) yields the following
model, which is denoted by HAR-SJ:

RVtþ1 ¼ b1 þ b2RVt þ b3RVt;t�4 þ b4RVt;t�21 þ b5SJt�1 þ et
(6)

3.1.3. Leverage model
Motivated by the HAR model and extensions by McAleer and

Medeiros [45]; Corsi and Reno [46]; and a study of Chan and Grant
[25] we add to the HAR model variables constructed from past
returns. We include the return in absolute value and the interaction
term of an absolute return and the indicator function I(.) that
returns 1 if the intraday return rte1 is negative and 0 otherwise. We
denote this model as the L-HAR-model:

RVtþ1 ¼ b1 þ b2RVt þ b3RVt;t�4 þ b4RVt;t�21 þ b5jrt�1j
þ b6jrt�1jIðrt�1 <0Þ þ et (7)

If we include the term |rte1|I(rte1<0) only, the b5 coefficient may
be overestimated due to returns that are high in absolute value,
which usually occurs during periods of high volatility. We control

for this possibility by including the term |rte1|.

3.1.4. Model with continuous and jump components
The total variation of the log price process is the sum of the

continuous and discontinuous (jump) components [47]. To disen-
tangle the two components from the total variation, Barndorff-
Nielsen and Shephard [47] proposed a consistent estimator of the
continuous component, even in the presence of jumpsdbi-power
variation. In this study, we apply a more recent approach by
Andersen et al. [48]; who proposed estimating the variance of the
continuous component via the median realized variance (MRV),
which should yield an estimate with improved finite-sample
properties in the presence of small returns and jumps:

MRV2
t ¼

�
p

6�4
ffiffiffi
3

p
þp

��
N

N�2

�XN�2

j¼2

�
med

���rt;j�1
��; ��rt;j��; ��rt;jþ1

��	�2

(8)

[49] argued that estimating the jump component as the differ-
ence between the realized variance and the median realized vari-
ance may produce non-zero estimates in empirical applications,
even if no jumps exist. As a remedy, we determine the presence of a
jump component using a test by Andersen et al. [48]. The size of the
jump component (JCt) and continuous component (CCt) for the
trading day t is estimated as

JCt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

n
0;


RV2

t �MRV2
t

�
� IðJTt >f1�aÞ

or
(9)

CCt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MRV2

t � IðJTt >f1�aÞ þ RV2
t � IðJTt � f1�aÞ

r
(10)

where f1ea denotes the critical value of the standard normal dis-
tribution (a¼ 0.05), I(.) is the indicator function that returns the
value of 1 if the condition applies and 0 otherwise, and JTt is the test
statistic defined in Andersen et al. [48].

Sudden price changes were considered in volatility models by
Chan and Grant [25]. In our setting, we substitute the lagged jumps
and the continuous components into Eq. (3) instead of the realized
volatilities; we obtain the HAR-CJ model:

RVtþ1 ¼ b1 þ b2JCt þ b3CCt þ b4RVt;t�4 þ b5RVt;t�21 þ et (11)

3.1.5. Model with a non-trading day component
According to Ly�ocsa and Moln�ar [50]; use of the simple autor-

egressive volatility models causes underestimated volatility
persistence because weekends and holidays cause gaps in consec-
utive trading days. Using data from equity markets around the
world, their empirical findings suggest that a simple adjustment of
the HAR model improves the in- and out-of-sample model fit. We
follow their recommendation and consider the HAR-NT model

RVtþ1 ¼ b1 þ b2RVt þ b3RVt � IðDðt; t � 1Þ � 3Þ þ b4RVt;t�4

þ b5RVt;t�21 þ et
(12)

where D(t,te1) denotes the calendar-day difference between two
consecutive trading days. In almost all instances, the value of three
corresponds to trading gaps due to weekends. The inclusion of the
interaction terms should produce higher estimates of the b2 co-
efficients in Eq. (12) compared with the standard HAR model
defined in Eq. (3).
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3.1.6. Model with components that depend on measurement error
Bollerslev et al. [51], have argued that although it is generally

recognized that realized volatility is estimated with measurement
error, empirical studies assume that the measurement error is
constant. Bollerslev et al. [51], demonstrated that a higher variance
of measurement error causes less predictable realized volatility.
The HAR-Q model of Bollerslev et al. [51], gives higher weight to
realized volatility during days of lower measurement error and vice
versa. Our version of theHAR-Q that models the realized volatility is
as follows:

RVtþ1 ¼ b1 þ RVt



b2 þ b3

ffiffiffiffiffiffiffi
RQ

p
t

�
þ b4RVt;t�4 þ b5RVt;t�21 þ et

(13)

The term RQt is the realized quarticity that estimates the un-
certainty of the estimator of realized volatility (see Ref. [51]:

RQt ¼ N
3

XN
j¼1

r4t;j (14)

3.1.7. The effect of related lagged realized volatilities
In the subsequent analysis (Table 2), the HAR (Eq. (3)), HAR-SJ

(Eq. (6)), L-HAR (Eq. (7)), HAR-CJ (Eq. (11)), HAR-NT (Eq. (12)), and
HAR-Q (Eq. (13)) models are denoted by standard models. Each of
the six models are augmented by adding the realized volatility
component of the other commodity and are denoted by HAR-X,
HAR-SJ-X, L-HAR-X, HAR-CJ-X, HAR-NT-X, and HAR-Q-X. For
example, in the case of the HAR model that forecasts the realized
volatility of the natural gas ETF, the HAR-X model includes the
lagged realized volatility of the oil ETF. Similarly, the HAR-SJ-X
model includes the signed jump component of the volatility of the
oil. These simple augmentations produce a total of twelve univar-
iate HAR models.

The augmentation is motivated by the fact that the two com-
modities may be perceived as imperfect substitutes either in real
life or financial markets for speculative or hedging purposes
although they may differ. Therefore, volatility spillovers between
the two markets may occur in both directions, and thus, adding
lagged volatilities may improve the forecasting performance (e.g.,
[20,29]. For example, Lin and Li [53] obtained evidence of volatility
spillover from the oil to the natural gas market in the United States
and Europe but not in Japan. A similar augmentation was recently
employed by Degiannakis and Filis [39]; who augmented the HAR
model with three volatility components of the related commodity,
namely, the lagged RV, weakly average RV and monthly average RV.

3.2. Generalized heterogeneous autoregressive model

To model the joint dynamics and volatility of a multiple time
series, �Cech and Baruník [40] proposed the generalized heteroge-
neous autoregressive (GHAR model. This modeling strategy might
be advantageous if the evolution of a multiple time series is
determined by some common factors. Additionally, �Cech and Bar-
nuník (2017) proposed modeling elements of a suitable variance-
covariance matrix within the seemingly unrelated regression
(SUR) framework to exploit cross-sectional dependence among
regression errors.

The GHAR system models the individual daily “volatilities” and
the dependency between two assetsdnatural gas and oildand
produces a system of three equations. In the following subsections,
we describe the GHARmodel in a more general setting for N assets.

We follow the work of Barndorff-Nielsen et al. [54] and estimate
the daily realized variance-covariance matrix via the semi-definite

Multivariate Realized Kernel (MRK) estimator.

bSMRK
t ¼

XN
h¼�N

k
�
h
H

�
Gt;h (15)

were k(.) is the kernel-weighting function. We employed the rec-
ommended Parzen scheme:

Gt;h ¼
XN

j¼hþ1

rt;jr
T
t;j�h; h � 0 (16)

where rt,j denotes a column vector of intraday continuous returns of
a given set of M assets at day t, and h is the bandwidth parameter.
For h< 0, Gt,h¼Gt,eh

T . Following Chiriac and Voev [55]; �Cech and
Baruník [40] did not directly model the elements of the M�MbSMRK

t matrix. To ensure positive semi-definiteness of the resulting
forecasts, we decompose the bSMRK

t matrix via Cholesky factoriza-
tion PtPT

t ¼ bSMRK
t and define a q(qþ1)/2 column vector:

Xt ¼ vechðPtÞ (17)

where vech(.) creates a column vector whose elements correspond
to the lower triangular elements of Pt. The system of forecasting
regressions is given by:

0
@X

:
X

1
A ¼

0
@Z1;t 0 0

0 : 0
0 0 Zm;t

1
A
0
@b

:
b

1
Aþ

0
@ ε

:
ε

1
A (18)

Vector Zi,t consists of (e Xi,t Xi,t,te4 Xi,t,te21), where the elements
of Xi,t,te4 and Xi,t,te21 correspond to the average values over the
previous 5 trading days and 22 trading days, respectively; e is a
vector of ones; b is a column vector of coefficients (including the
constant); and εi is the vector of error terms. Following �Cech and
Baruník [40]; we estimate this system within the SUR framework
with the generalized least squares estimation method.

Compared with the automatic bandwidth parameter procedure
employed by �Cech and Baruník [40]; we apply a more heuristic
approach to estimate the bandwidth parameter h. We consider
bandwidths in the range from one to eight. Each forecast that
employs a GHARmodel is estimated with the bandwidth parameter
h, which produced the lowest mean square forecast error in a
sample of the most recent 126 out-of-sample forecasts.

To produce an out-of-sample forecast with univariate HAR
models, we do not rely on these procedures, and therefore, we have
126 more out-of-sample forecasts for the univariate HAR models
than for the GHAR models. To facilitate the comparison between
univariate models and multivariate HAR models, we match out-of-
sample forecasts to ensure that they correspond to the same
trading days.

3.3. Forecast combination

Forecasters face uncertainty about the variables to use or the
specifications to choose. In practice, these uncertainties create
several competing models that produce different forecasts. Using
ideas originated by Bates and Granger [56]; Timmermann [57]
argued that if individual forecasts are unbiased and not highly
correlated, some combination of these forecasts will produce un-
biased forecasts with a smaller forecast error, i.e., an even better
forecast.

Our choice of the combination function is the simple average.
The first combination forecast FWo,tþ1 averages forecasts from
standard six HAR models:
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FWo;tþ1 ¼ jKj�1
X
k2K

Fk;tþ1 (19)

where K denotes the set of six univariate models, |.| denotes the
cardinality of the set, and Fk,tþ1 denotes the kth individual forecast.
Combination forecasts of natural gas realized volatility from Eq.
(19) are denoted byWoO (without oil) and combination forecasts of
realized volatility of Oil are denoted by WoG (without gas).

The second combination forecast FW,tþ1 averages forecasts from
a univariate six HAR model that are augmented by the lagged
volatility component(s) of related commodity's realized volatility:

FW;tþ1 ¼ jLj�1
X
l2L

Fl;tþ1 (20)

were L denotes the set of six augmented univariate HAR models.
Combination forecasts of natural gas realized volatility from Eq.
(20) are denoted byWO (with oil), and combination forecasts of the
realized volatility of oil are denoted by WG (with gas).

The third combination forecast Fall,tþ1 averages the previous two
combination forecasts and the multivariate forecast produced from
the GHAR model:

Fall;tþ1 ¼ �FW;tþ1 þ FWo;tþ1 þ FGHAR;tþ1
��

3 (21)

3.4. Forecast evaluation

We evaluate forecasts based on a distance measure between the
forecast of volatility and the proxy of the volatility. The distance
function is referred to as a loss function. The forecasting ability is
evaluated using three loss functions: Squared Forecast Error (SFE),
QLIKE, and absolute forecast error (AFE):

LSFEtþ1 ¼ ðFtþ1 � RVtþ1Þ2 (22)

LQLIKEtþ1 ¼ RVtþ1

Ftþ1
� ln

�
RVtþ1

Ftþ1

�
� 1 (23)

LAFEtþ1 ¼ jFtþ1 � RVtþ1j (24)

where RVtþ1 is the 10-min realized volatility (Eq. (2)), which is our
proxy for the true unobserved market volatility [58], and Ftþ1 is a
given forecast of volatility. We use the QLIKE loss functions in
Christoffersen [59]; p. 85).

We employ all three loss functions because they give weight to
different aspects of forecast errors. In risk management, large
forecast errors may be disproportionally penalized, and therefore,
the SFE is often used in practice. Rare extreme forecast errors are
often observed in studies that address forecasting of market vola-
tility, which might be attributed to the nature of markets, where
unexpected events might cause extreme price movements that
cannot be captured by forecasting models. AFE is more balanced
because it is more robust in the presence of outliers. Patton [60]
advocates the use of QLIKE and SFE because it provides consistent
model rankings even when a forecasted variable is measured with
noise. We include QLIKE in our set of loss functions. Similar choices
for loss functions are found in Hansen and Lunde [58]; Borovkova
and Mahakena [61]; and Golosnoy and Okhrin [62].

Let LA,t represent the value of a given loss function for model A at
day t and LB,t represent the value of a given loss function for model B
at day t. The loss differential is defined as follows:

dA;B;t ¼ LA;t � LB;t (25)

The size of the average loss differential is statistically evaluated
using the Hansen et al. [52], model confidence set, which is a test of
the superior predictive ability of one ormoremodels within a given
set of models. We test the following hypotheses:

H0 : E

dA;B;t

� ¼ 0
H0 : E


dA;B;t

�
s0

(26)

We always compare two forecasting models. The first fore-
casting model is the benchmark forecast, which is given by the
standard HAR model; the second forecasting model is given by the
competing model (or combination of forecasts). The Hansen et al.
[52], model confidence set runs the following test statistics2:

tA;B ¼ dA;BffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibV
dA;B
�r (27)

where dA;B is the average value of the loss differential, and the
volatility of dA;B in the denominator is estimated via the block-
bootstrap. The block length p is set to the maximum number of
significant parameters of a simple AR(p) model of dA,B,t [52]. Using
the bootstrap with 10,000 bootstrap samples, we estimate the
distribution of the test statistics under the null hypothesis and
derive the p-values for each model comparison test.

3.5. Forecasting procedure

The forecasting results presented in sections 4.2e4.4 are based
on a rolling forecast scheme with an estimation window of 1000
observations. Using the first 1000 observations, we estimate all
univariate HAR models (12� 2¼ 24) and GHAR models (eight for
each bandwidth parameter). Using the estimated coefficients and
the last thousand observations, we forecast the realized volatility
for the 1001st observation. The combination forecasts are also
calculated from these forecasts. We repeat the procedure and roll
the estimation window one observation ahead; i.e., we use the 2nd
to 1001st observations to estimate the univariate and multivariate
models that are employed to forecast the realized volatility of the
1002nd observation. We continue until we reach the end of our
sample. However, our forecast evaluation starts with the 127th

forecast because the first 126 forecasts are used to choose a GHAR
model with a given bandwidth parameter that yielded the lowest
average squared forecast error over the previous 126 forecasts
(refer to the end of section 3.2 for explanation).

Our choice of 1000 observations in the estimation window is
motivated by the fact that natural gas and oil are subject to seasonal
demands. Using the estimation window that is less than a year is
problematic. We assumed that several years are needed to mitigate
a possible effect of seasonality on the oil and natural gas market.
The argument is similar to the argument of Narayan and Gupta
[63]; who used 50% of the total sample to create the first forecast,
which considered large oil shocks. Previous empirical literature on
forecasting volatility also employed similarly sized estimation
windows (e.g., Sevi [30] 3.

2 This test was performed using the procedures developed by Bernardi and
Catania [79] for program R.

3 We run our analysis also with estimation windows of size 500 and 750. Qual-
itatively, the results were similar. However, forecasts were more accurate (lower
average forecast errors) with a window size of 1000. The results are available upon
request.
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The choice for the rolling forecast scheme is motivated by the
fact that this approach is better suited when parameter changes are
expected [64]. As shown in previous studies (e.g. [15], the re-
lationships between natural gas and oil are unstable, and a rolling
window forecasting scheme is more suitable to capture structural
changes than an expanding window forecasting scheme. An eval-
uation of forecasts relies on the test by Narayan and Gupta [52];
which explicitly assumes a rolling forecast scheme.

3.6. Accounting for possibility of structural changes

Recent developments suggest that accounting for structural
breaks makes forecasts more precise (e.g. Refs. [65e71]. First, we
estimate all univariate HAR models through ordinary least squares
(OLS) ignoring possible existence of breaks in parameters. To ac-
count for a possibility of a structural break with an unknown date,
we use an approach suggested by Ref. [68]. We estimate the HAR
model through weighted least squares (WLS), where we use robust
weights (see Eq. 44 and Eq. 48 in Ref. [68]. The weights are a
monotonically increasing function of time, where most recent
observation has the highest weight. Comparison of the OLS and
WLS forecasts revealed that this strategy is advantageous for all loss
functions. For the gas volatility, the forecast errors from WLS were
on average 1.6% smaller than with OLS and for the oil, forecast er-
rors were in average 3.0% smaller. These improvements are not
negligible, and we therefore decided to report results only for the
WLS estimation.

4. Results

4.1. Characteristics of the realized volatility of natural gas and oil

In this section, we present some features and stylized facts of
our data. In Table 1 we find calculated summary statistics of the
realized volatility for the crude oil and natural gas ETFs. In Fig. 1, we
observe that the realized volatility declines because the beginning
of our sample includes the global financial crisis that produced
turbulent periods across asset classes around the world.

Table 1 shows notable differences between oil and gas. Existing
literature revealed that natural gas is subject to higher short-term
volatility. For example, Misund and Oglend [73] found that
already daily fluctuations in gas demand might impact price vola-
tility of the gas. Previous studies have indicated that the volatility of
natural gas is larger than the volatility of oil (e.g. Ref. [17,24]. We
confirm that this finding also holds for the volatility of ETFs because
the mean, median and lower and upper quartiles of realized vola-
tility are larger for natural gas than for oil. In addition, the jump
component of volatility is 82.5% larger for natural gas than for oil,
whereas approximately 19.7% of the total volatility can be attrib-
uted to the jump component for natural gas but only 14.6% in the
case of oil. As shown in Fig. 1, price variations due to jumps
frequently occur. Both jump components show minimal persis-
tence, similarly as in Andersen et al., [74]; who observed small
persistence for foreign exchange, S&P 500 and 30-year Treasury
bond volatility and Ly�ocsa and Moln�ar [75]; who observed minimal
persistence in jump components in the gold and silver ETFs or jump
components of realized volatility of future contracts of non-ferrous
metals, e.g., nickel, zinc, aluminum, copper and lead [76]. The first-
order autocorrelation for the volatility of natural gas (0.35) is
significantly smaller than the first-order autocorrelation for the
volatility of oil (0.81).

The key point is that the predictability of the volatility of oil and
natural gas is mitigated by the presence of jumps because jumps
reveal minimal persistence. Because jumps are relatively more
important for natural gas, the results in Table 1 suggest that fore-
casting volatility for natural gas will be more difficult than fore-
casting crude oil. Our study confirmed this suggestion.

4.2. Forecasts of the realized volatility of natural gas

On the left side of Fig. 2, we plotted the realized volatility (black
line) and forecasted volatility from the model (Eq. (20), red line).
The realized and forecasted values reveal that forecasts are unable
to catch sudden spikes in volatility of the natural gas. This finding
suggests a positive association between forecast error and the size
of the realized volatility, which is not surprising because HAR and

Table 1
Summary statistics for realized volatility.

Mean Median SD IQ IIIQ Kurt. Skew. r(1)

Panel A: Natural gas
R �0.06 �0.05 2.03 �1.18 1.07 5.71 0.29 �0.07 ***

RV 29.71 26.65 14.10 20.32 35.45 14.32 2.21 0.35 ***

CC 27.16 24.84 11.57 18.98 32.77 6.39 1.45 0.54 ***

JC 5.84 0.00 13.25 0.00 0.00 25.78 3.66 �0.04 **

SJ �1.47 �4.58 20.47 �13.9 11.82 7.51 0.41 �0.07 ***

AAR 0.78 0.05 1.22 0.00 1.18 7.71 2.07 �0.04
NT 5.62 0.00 11.99 0.00 0.00 7.83 2.20 �0.22 ***

RVRQ 328.77 192.86 561.40 109.24 360.12 304.26 13.1 0.07 ***

Panel B: Oil
R 0.00 0.06 1.60 �0.76 0.80 7.93 �0.07 0.01
RV 21.98 18.52 13.07 13.37 25.82 7.79 1.98 0.81 ***

CC 20.82 17.49 12.36 12.58 24.55 7.59 1.92 0.81 ***

JC 3.20 0.00 7.59 0.00 0.00 19.21 3.51 0.05
SJ �0.45 0.82 14.34 �9.25 8.68 4.82 �0.10 0.00
AAR 0.56 0.00 1.01 0.00 0.76 14.19 2.87 0.12 ***

NT 4.33 0.00 10.20 0.00 0.00 14.23 3.07 �0.18 ***

RVRQ 181.18 91.88 277.77 48.02 186.82 25.60 4.17 0.69 ***

Notes: The results in this table were produced using 1753 synchronized observations. In the columns, IQ and IIIQ denote the first quartile and third quartile, respectively; Kurt.
And Skew. Are the kurtosis and skewness, respectively; r(1) is the value of the first-order autocorrelation coefficient; and *** and ** denote the statistical significance at the 1%
significance level and 5% significance level, respectively, based on the Escanciano and Lobato [72] serial correlation test. In the row, R denotes the intraday return; RV denotes
the realized volatility (Eq. (2)); CC is the continuous component (Eq. (10)) of the realized volatility; JC is the jump component (Eq. (9)) of the realized volatility; SJ is the signed
jump (Eq. (5)); AAR is the absolute value of the intraday return for days when returns are negative and 0 otherwise; the asymmetric component NT is the non-trading
component, which is the annualized realized volatility after a non-trading weekend and 0 otherwise, and RVRQ is the interaction between the realized volatility and the
realized quarticity.
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GHAR models are based on historical volatility using linear autor-
egressive volatility specification. Thus, when the true volatility is
unusually high, forecasts from these models will be unusually low.

The takeaway from Fig. 2 is that the evaluation of forecasts
needs to be performed across different evaluation functions. As
previously noted in section 3.3, the SFEwill penalize extreme errors
more than the AFE, and the QLIKE loss function uses ratios of the
actual and forecasted realized volatility and may mitigate the
weight of these extreme forecast errors when evaluating forecasts.

In Table 2, we present the average values of the loss functions.
For example, the value of 93.19 (HAR model in Panel A and column
MSFE) is the average of the squared forecast error between the
forecast produced using the benchmark HAR model (Eq. (3)) and
the proxy of the true realized volatility (Eq. (2)). The statistical
significance corresponds to a test that assesses whether an alter-
native forecast outperforms the benchmark forecast represented by
the previously mentioned HAR model. For example, in Panel A, we
observe that L-HAR and HAR-Q produced forecasts with lower
forecast error regardless of the employed loss function. Several of
these improvements were also statistically significant. Taking the
average of the forecasts from all standard models yields the com-
bination forecast (Eq. (19)), which also produced statistically
improved forecasts.

Does the lagged realized volatility of the oil contain valuable
information for day-ahead forecasts of the volatility of natural gas?
In Panel B, we observe that results are mixed as compared to the
benchmarkHARmodel forecasts were improved in above half of the
cases. Forecast improvements appear to depend on the type of the
HAR model. For example, a comparison of the L-HAR and L-HAR-X
model reveals that the average loss functions of the L-HAR-Xmodel
are lower than the average loss functions of the L-HAR model. Note
that the statistical test, whose results are reported in Table 2,
compares each model with the benchmark HAR model (first row).
Therefore, we also present the results in Panel E, where we compare
the results from two combination forecasts: WoO does not include
the volatility of the oil, and WO does include the volatility of oil.
This finding enables us to form general conclusions about the
usefulness of lagged realized volatility of oil for forecasting pur-
poses of the next-day realized volatility of natural gas. The ratio is
lower than 1, which indicates that WO produced a lower average
loss function, but the improvement is statistically significant only
for the AFE loss function. It therefore appears that the lagged
realized volatility of oil has only limited value for predicting day-
ahead realized volatility of natural gas.

Does contemporaneous dependence between the volatility of oil
and the volatility of gas improve day-ahead forecasts of the vola-
tility of natural gas? We refer to the multivariate GHAR model that
jointly models the volatility of oil and gas. Compared with the
benchmark forecasts of the HAR model, the values of MSFE and
QLIKE deteriorated (In Panel C of Table 2). Improvements were
obtained for MAFE, but were not statistically significant. The
multivariate framework of the GHAR model efficiently estimates
the common factor that is responsible for part of the dynamics of
the volatilities of both commodities (joint estimation via SUR and
inclusion of the covariance equation) compared with univariate
models. When these common dynamics drive volatility dynamics,
forecasts may be improved. As Fig. 1 suggests, larger forecast errors
are associated with events when the volatility is large. During these
periods, volatility is predominantly driven by idiosyncratic factors,
and therefore, GHARmight generate less efficient forecasts. Because

Fig. 1. Evolution of realized volatility (RV), jump component (JC), signed jump (SJ) and interaction between realized volatility and realized quarticity (RVRQ).

Fig. 2. Forecasted (red) and realized (black) values from combination forecasts (WO e

left e and WG models e right).
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SFE gives more weight to forecast errors than AFE, GHAR has not
produced improved forecasts for SFE but has produced improved
forecast errors for the AFE loss function. Because the results are
mixed, we conclude that exploiting the contemporaneous depen-
dence between the volatility of oil and the volatility of natural gas
does not improve the forecasts of natural gas.

Although forecasts from the GHAR do not appear to be partic-
ularly useful by themselves, the inclusion of these forecasts into a
combination forecast may produce improved results. The all models
(Eq. (21)) averages two combination forecasts and the GHAR fore-
cast. The results are reported in Panel D of Table 2. Comparison of
forecast errors between WoO (Eq. (19)) and WO (Eq. (20)) suggests
that the inclusion of the GHAR into the combination forecast all
models has not helped. In Panel E, we directly test theWoO forecast
that disregards the realized volatility of oil with the all models that
includes the realized volatility of oil. The ratio exceeds 1; thus, all
models does not exhibit superior predictive ability compared to the
WoO.

4.3. Forecasts of the realized volatility of oil

In the right panel of Fig. 2, we plotted the forecasted and real-
ized volatility of oil (WG model). The forecasts track the general
movement of volatility, and forecast errors tend to be larger for
days with higher market volatility than for days with lower market
volatility. The first striking difference between oil and natural gas
volatility forecasts is that forecast errors for the oil (refer to Table 2)
are substantially smaller than the forecast errors of natural gas
regardless of the loss function. Table 2 also reveals that the alter-
native model specifications appear to be less relevant than the
alternative model specifications for natural gas. L-HAR and HAR-Q

models, which appeared to have some merit for predicting the
volatility of natural gas, does not have the same merit when the
volatility of oil is concerned. Only HAR-SJ (Eq. (6)) shows consistent
and statistically significant improvements across loss functions. The
choice of the ‘right’model specification depends on the given asset.
From a forecaster's perspective, a safer approach is to rely on
combination forecasts. The WG model produces better forecasts
than the forecasts of the benchmark model but does not improve
the HAR-SJ models.

Does the lagged realized volatility of the natural gas contain
valuable information for day-ahead forecasts of the volatility of oil?
In Panel B, we observe that forecasts have improved compared with
the benchmark HAR model. For example, HAR-SJ and HAR-SJ-X
yielded the same average loss function; i.e., adding lagged signed
jump of the natural gas to the HAR-SJ model of the volatility of oil
produced comparable results. A comparison of the WG and WoG
models (refer to Panel E) shows statistically significant improve-
ment. We conclude that the lagged realized volatility of natural gas
does produce improved forecasts of the day-ahead realized vola-
tility of oil. However, the improvements are small. For example,
comparing two combination forecasts, onewithout the information
about the volatility on the natural gas market, with a forecast that
incorporates information about the volatility on the natural gas
market, led to a 0.5% improvement in forecast accuracy. The sub-
lime role of the natural gas volatility is consistent with the findings
of Degiannakis and Filis [39]; who found almost non-existent im-
provements of forecasting accuracy in a similar, augmented HAR
model.

Does the contemporaneous dependence between the volatility
of oil and the volatility of gas improve day-ahead forecasts of the
volatility of oil? The GHAR model has not improved volatility

Table 2
Forecasting performance of HAR, GHAR and combination forecasts.

Natural gas Oil

MSFE QLIKE MAFE MSFE QLIKE MAFE

Panel A: Standard models
HAR 93.19 0.0633 6.81 HAR 18.29 0.0326 3.02
HAR-CJ 91.18* 0.0621 6.75 HAR-CJ 18.06 0.0325 3.01
HAR-SJ 92.86 0.0632 6.78** HAR-SJ 17.76*** 0.0319*** 2.98***

L-HAR 92.07* 0.0628* 6.72*** L-HAR 17.59 0.0322 2.97**

HAR-NT 94.08 0.0638 6.9 HAR-NT 18.02 0.0329 3.03
HAR-Q 91.86** 0.0627 6.76* HAR-Q 18.42 0.0326 3.03
Averaged forecast
Without OIL (WoO) 91.91*** 0.0625*** 6.76*** Without GAS (WoG) 17.87** 0.0322*** 2.99***

Panel B: Models that utilize another commodity
HAR-X 93.26 0.0635 6.77* HAR-X 18.25 0.0325 3.02
HAR-CJ-X 91.78 0.0628 6.77 HAR-CJ-X 17.84* 0.0321** 2.99**

HAR-SJ-X 92.81 0.0634 6.78* HAR-SJ-X 17.76*** 0.0319*** 2.98***

L-HAR-X 91.64 0.0627 6.70*** L-HAR-X 17.61 0.0322 2.98**

HAR-NT-X 93.75 0.0637 6.91 HAR-NT-X 17.96 0.0331 3.04
HAR-Q-X 92.05 0.0630 6.75* HAR-Q-X 18.33 0.0324** 3.02
Averaged forecast
With OIL (WO) 91.61*** 0.0624*** 6.74*** With GAS (WG) 17.79** 0.0321*** 2.99***

Panel C: Multivariate model
GHAR 95.94 0.0653 6.96 GHAR 19.00 0.0344 3.02
Panel D: Average across all models
All models 92.71 0.063 6.80 All models 17.94 0.0325 2.99**

Panel E: Comparing comb. fore.
WO/WoO 0.997 0.998 0.996* WG/WoG 0.995*** 0.995*** 0.998
All models/WoO 1.009 1.008 1.005 All models/WoG 1.004 1.008 0.999

Note: In Panels AeE *, **, *** denotes the statistical significance of the Hansen et al. [52] model encompassing test at the 10%, 5%, and 1% significance levels, where we compare
the corresponding model with the benchmark represented by the standard HARmodel. In Panel E the Hansen et al.’s (2011) test predictive equality of predictive ability of two
combination forecast models, where the bold values less than one correspond to a statistically significant improvement of the model in the numerator compared with the
model in the denominator. HAR-CJ represents the model with continuous and jump components, HAR-SJ with signed jump, L-HAR leverage model, HAR-NT model with non-
trading component, and the HAR-Qmodel with realized quarticity. GHAR represents the multivariate HAR.WG andWO denotes forecasting model that averages forecasts from
standard models. WoG and WoO denotes the forecasting model that averages forecasts from models enhanced with natural gas or oil volatility component. GHAR represents
the multivariate HAR. All models denote forecast that average either WG, WoG, and GHAR forecasts (for oil) or WO, WoO, and GHAR forecasts (for natural gas).
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forecasts when evaluated via SFE and QLIKE (refer to Panel C).
Multivariate model led to similar forecasts as its univariate coun-
terpart when forecasts were evaluated through the MAFE loss
function. Given the AFE loss function, the combination of the GHAR
withWG andWoG (model all models, Eq. (21)) also does not seem to
improve forecasts that are solely based on WG (Panel E). The gen-
eral contemporaneous dependence between natural gas volatility
and oil volatility does not improve forecasts of oil volatility.

4.4. Discussion of our results based on existing research

Although numerous studies have focused on the connection
between the oil market and the gas market general (refer to the
introduction), we are not aware of any research that analyzes
whether the connection between oil and gas can improve forecasts
of realized volatility of these two commodities. An exception is a
recent study by Degiannakis and Filis [40], who studied the role of
the volatility of natural gas for predicting the volatility of oil. Bol-
lerslev et al. [42] conclude that standardized realized volatility
exhibit very similar patterns across various assets. Therefore, we
compare our results with results from papers that explored ques-
tions similar to ours, even though the commodities (or assets)
differed.

The research question in Ly�ocsa andMoln�ar [75] is similar to our
research question; however, they study realized volatility fore-
casting for gold and silver. Similarly, they discover that the utili-
zation of information from other commodities may improve
volatility forecasts. A similar conclusion is obtained by Ref. [34] for
currencies. Regarding the realized volatility forecasts of oil, Sou�cek
and Todorova [37] suggest that these forecasts can be improved by
incorporating information from equity markets. Degiannakis and
Filis [39] obtain similar results; however, they consider not only
equities but also other asset classes, including commodities and
currencies.

Our results, which indicate that averaging forecasts fromvarious
models produces better forecasts, are consistent with the results
from previous studies (refer to e.g., Liu and Maheu [77,75]; Ly�ocsa
et al., [76]; and also consistent with our expectations based on
existing literature, but our study is the first to address the realized
volatility of oil and gas.

5. Concluding remarks

We study the volatility forecasts of crude oil and natural gas for
the period from 2008 to 2014. Our central question is whether the
link between these two strategically linked commodities gas can be
utilized when forecasting day-ahead volatility. In this study, we
provide empirical evidence to this question using high-frequency
data, twelve univariate models, one multivariate model, and three
combination forecasting models, which belong to the class of HAR
models. In addition to the benchmark model of Corsi [13]; we
employ models that utilize signed jumps [44] or decomposition of
the realized volatility into continuous and jump components
[47,48], models that account for the measurement error of realized
variance [51], models that seek to exploit leverage or the asym-
metric volatility effect, and models that account for breaks in the
time series due to non-trading days. Each of these specifications is
extended by including lagged components of realized volatility
from the related commoditydeither natural gas (when forecasting
volatility of oil) or oil (when forecasting volatility of gas). The
multivariate model is based on the modeling of the Cholesky fac-
tors of the realized kernel-based covariance matrix within a
seemingly unrelated regression framework, which was proposed
by �Cech and Baruník [40]. Our forecasting system of equations in-
corporates the two related commodities. Combination forecasts are

also employed. The first combination forecast averages forecasts
across six univariate HAR models that do not include volatility
components from related commodity. The second combination
forecasts averages forecasts across univariate models that include
the volatility component from the related commodity. The third
combination forecast averages the multivariate forecast with the
two previous combination forecasts.

Our key result is that adding volatility components of the related
commodity alone can hardly improve volatility forecasts. Forecast
improvements differ across volatility models and two considered
commodities. However, we found that combination of forecasts
from various models tend to perform better than forecasts from
individual models. We summarize our findings as follows:

� Adding a lagged volatility component of the related commodity
(gas) is more advantageous when forecasting the volatility of oil.

� Exploiting the contemporaneous dependence between oil and
natural gas in a multivariate (GHAR) model does not improve
day-ahead volatility forecasting.

� Combination forecasts produce improved forecasts.
� It is still possible to harness information on volatility from
related commodity when used within a framework of a com-
bination forecast.

This paper can serve as a guideline for researchers who must
precisely forecast the volatility of crude oil or natural gas. Although
previous studies have demonstrated that the HAR model is a very
good model for oil and gas, our results suggest that the volatilities
of the two commodities are distinct enough, in that it seems
difficult to exploit information about the volatility of the other
commodity to improve volatility forecasts. Tangible, although
relative small performance improvements can be exploited, only
when forecast are combined from various forecasting models that
also include information from the related commodity.
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A B S T R A C T

This paper studies the comovement between volatility of the equity market and the oil market,
both for implied and realized volatilities. The wavelet methodology enables us to study this
relationship on various time scales. We find that there is a strong comovement between the
volatilities of the two markets. However, this comovement is time-varying and depends on the
time scale. It is strong at yearly horizon, but much weaker at horizons of a few days. Moreover,
implied volatility of the stock market leads the implied volatility of the oil market, whereas no
such relationship is observed for realized volatilities.

1. Introduction

Participants in financial markets are subject to the volatility of their investments. Therefore, volatility plays a crucial role in
portfolio optimization, risk management, hedging, derivative pricing and particularly option pricing. In 1993, the CBOE introduced a
volatility index for the US stock market, the VIX index. The VIX index, often called a fear index, has become one of the most followed
indicators in the financial markets.

Due to the huge success and importance of the VIX index, similar indices have been introduced not only for other equity markets
(Bugge et al., 2016), but also for commodities (Birkelund et al., 2015). The unique feature of implied volatility is that it is forward-
looking, whereas volatility models based on historical data are backward-looking. The implied volatility is a measure of a market risk,
and it is forward-looking since it contains investors expectation of future market changes. Hence, studies based on implied volatility
can help us understand how the expectations about risk are transferred from one market to another. Such studies have become
increasingly popular, for example, Sari et al. (2011) found that VIX had a significantly suppressing effect on oil prices in the long run
and Qadan and Yagil (2012) concluded that VIX index has significant impact on gold prices.

In recent years, commodities have become a more and more important part of many portfolios. Crude oil is probably the most
important commodity in the world. Oil has a weight above 50% in the general commodity index. Moreover, oil prices have a strong
impact on many other commodities. Understanding oil price volatility is important for several reasons. Not only has oil price vo-
latility an impact on company investments (Henriques and Sadorsky, 2011) and other macroeconomic variables (Rafiq et al., 2009),
but it also has a direct impact on the economies of oil importing and oil exporting countries.

Since the stock market can be considered as a proxy for the general economy, and oil is the most important commodity, we
therefore study the relationship between implied volatility for the equity market (the VIX index) and implied volatility for crude oil
(the OVX index). There are several papers related to our study. Ji and Fan (2012) found that the crude oil market has significant
volatility spillover effects on non-energy commodity markets and that the overall level of correlation strengthened after the crisis.
Guo and Ji (2013) found a significant impact of Google search query volumes on oil volatility. Haugom et al. (2014) found that
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volatility model for oil is improved when implied volatility is included in the model. Dutta et al. (2017) found that the OVX index
predicts volatility of Middle East and African stock markets. Luo and Qin (2017) studied the impact of oil volatility on the Chinese
stock market and confirmed the importance of forward-looking implied volatility by finding that implied volatility has significant and
negative effects on the Chinese stock market while the impact of realized volatility shocks is negligible.

Papers most closely related to our work are those by Liu et al. (2013) and Maghyereh et al. (2016). Liu et al. (2013) studied
transmission between the oil implied volatility (OVX) and stock market implied volatility (VIX), euro/dollar exchange rate implied
volatility (EVZ) and gold price implied volatility (GVZ). Maghyereh et al. (2016) analysed the relationship between implied volatility
of oil and implied volatility of various stock markets. Both these papers are based on variance decomposition and analyse the
relationships on daily frequency.

We utilize the wavelet methodology, which has the advantage of enabling us to investigate the relationship between variables on
various time scales. In other words, we investigate the comovement and the lead-lag relationship between VIX and OVX not just on
one arbitrary time scale (e.g. daily), but on various time scales from daily to yearly. We find that the implied volatility of the equity
market (VIX) and the implied volatility of the oil market (OVX) are highly correlated.

Our main contribution is the finding that the relationship between implied volatility of oil and implied volatility of stock market
depends on time scale. There is only contemporary correlation (no lead/lag relationship) between VIX and OVX on short time scales
(high frequencies), but there is a significant lead/lag relationship on longer time scales (lower frequencies). Our results have im-
plications both for general understanding of financial markets as well as for traders and other market participants exposed to the
volatility of the oil market.

The rest of the paper is organized as follows. Section 2 introduces the continuous wavelet transform, wavelet power, squared
wavelet coherence, relative phase and cross-wavelet gain. Section 3 presents the data used in the analysis. Section 4 reports and
discusses the results of the analysis. Section 5 concludes.

2. Wavelet characteristics

The continuous wavelet transform (CWT) and measures derived from the CWT, such as the cross-wavelet transform, cross-wavelet
power, squared wavelet coherence and relative phase (see e.g., Torrence and Compo, 1998 or Grinsted et al., 2004) provide a favorite
set of tools used to explore time-varying relationships between two time series.

While introducing the continuous wavelet transform and related measures, we make use of the introduction available in
Bašta et al. (2017). Specifically, we assume the Morlet wavelet defined as= ⎛⎝− ⎞⎠−ψ η π iω η η( ) exp( )exp 1

2
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where ω0 is equal to 6 and where η is a dimensionless time (Grinsted et al., 2004).
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To study the comovement of two time series = … −X t N{ : 0, , 1}t and = … −Y t N{ : 0, , 1},t the cross-wavelet transform between
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Generally, Wt s
XY
, is a complex number. The modulus of Wt s

XY
, is called the cross-wavelet power and can be considered as the absolute

covariance between {Xt} and {Yt} at time t and scale s. The argument of Wt s
XY
, is called the relative phase and can take any value from− π to π. It captures the lead/lag relationship between {Xt} and {Yt} at time t and scale s. More specifically, if relative phase is zero,

no lead or lag is present. On the other hand, positive values of the relative phase imply that {Xt} leads {Yt}, while negative values
imply that {Xt} lags behind {Yt}. The relative phase can be converted to time ΔT by which {Xt} leads {Yt} (if ΔT>0), or lags behind it
(ΔT<0). Specifically,

=T
W
πf

Δ
arg( )

2
,t s

XY
,

(4)

where f denotes the Fourier frequency associated with scale s which is, for the Morlet wavelet assumed in Eq. (1), given as
(Torrence and Compo, 1998) =f 1/(1.03 s).

The squared wavelet coherence between two time series = … −X t N{ : 0, , 1}t and = … −Y t N{ : 0, , 1}t at time t and scale s is
defined as (Grinsted et al., 2004)
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where the S operator in Eq. (5) defines smoothing in time and scale. More specifically, the operator is defined as (Grinsted et al.,
2004) =S W S S W( ) ( ( )),t s scale time t s, , (6)
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where c1 and c2 are normalization constants and Π is the boxcar function. In Eqs. (7) and (8), the * operator denotes convolution.
Squared wavelet coherence can attain any value in the range from 0 to 1 and can be considered as a local (at time t and scale s)
squared correlation between the time series {Xt} and {Yt}. If the squared wavelet coherence is close to one, a strong linear re-
lationship is suggested at the given time t and scale s. On the other hand, squared wavelet coherence close to zero denotes a very weak
linear relationship between the time series at time t and scale s.

Ge (2008) suggested that relative phase, i.e. the argument of the cross-wavelet transform, should be explored (only) in those
regions (in the time-scale plane) for which the values of the squared wavelet coherence are rather high.

Mandler and Scharnagl (2014) propose to use the cross-wavelet gain defined as

= ( )
( )G

S W

S W
,t s

s t s
XY

s t s
X,

1
,

1
,

2
(9)

which can be interpreted as a local absolute value of the regression coefficient of {Yt} on {Xt}.
Since wavelet coefficients are calculated by linearly filtering the time series using a non-causal linear filter (see Eq. (2)), the

coefficients, the (corrected) wavelet power spectrum, wavelet coherence, relative phase and cross-wavelet gain cannot be directly
obtained for regions close to the beginning and the end of the time series. As a result, artificial boundary conditions have to be
introduced so that all the characteristics associated with times corresponding to the beginning and the end of the time series can be
calculated. The region where the values of these characteristics are affected to a non-negligible extent by these artificial boundary
conditions is called the cone of influence and the results in the cone must be interpreted with caution since they may not reflect the
true underlying dynamics.

3. Data

The data were downloaded from finance.yahoo.com. As previously mentioned, the VIX index records 30-day volatility implied by
options written on the S&P 500 index. The OVX index records 30-day volatility implied by options written on the United States Oil
Fund.

The United States Oil Fund (USO) is an exchange traded fund that seeks to provide investors with easy exposure to the oil market.
Since investing in physical oil would be too costly, it invests in oil-related financial instruments, mostly oil futures. The USO’s
investment objective is to track percentage changes in the price of West Texas Intermediate (WTI) light, sweet crude oil delivered to
Cushing, Oklahoma, as measured by the changes in the price of the futures contract for light, sweet crude oil traded on the New York
Mercantile Exchange (the “NYMEX”), less the USO’s expenses. The USO is the most actively traded commodity exchange traded fund,
and is the 7th most traded of all the exchange traded funds.1 We consider the daily time series of VIX and OVX for the period from
May 10, 2007 till July 28, 2016.

Besides the implied volatility indices VIX and OVX, we also consider the time series of realized volatility of S&P 500 and USO in
the period from May 10, 2007 till July 28, 2016. Even though our main interest is the comovement between the implied volatility of
the oil and stock market, we conduct the same analysis for realized volatilities. Implied volatility reflects primarily the expectations
about the future, whereas realized volatility reflects what really happened. Therefore, investigating both types of volatility provides
us with a more complete picture of comovement between volatility of oil and stock market.

The Garman and Klass (1980) estimate of realized volatility (variance) for trading day t is adjusted for opening jump
(Molnár, 2012) and calculated as:= − − − +GK h l c j0.5( ) (2 log 2 1) ,t t t t t

2 2 2 (10)

1 According to http://etfdb.com/compare/volume/, accessed on July 30, 2017.
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where = −c C Olog( ) log( ),t t t = −h H Olog( ) log( ),t t t = −l L Olog( ) log( )t t t and = − −j O Clog( ) log( ),t t t 1 where log denotes the natural
logarithm and Ct, Ot, Ht and Lt are the close, open, high and low price of the asset (S&P 500 or USO) for day t. Implied volatility
measures volatility over a 30-day period over the whole 24 hours of each day, not just over periods from open to close. Therefore,
opening jump needs to be included in the estimate of realized volatility to make it comparable with implied volatility.2

Implied volatility indices VIX and OVX are annualized standard deviations of the underlying assets (S&P 500 and USO) quoted as
percentages, whereas the Garman–Klass estimates of realized volatilities of S&P 500 and USO calculated according to Eq. (10) are
variances on a daily scale. Consequently, we take the square root of the time series of the Garman–Klass estimates of realized
volatilities of S&P 500 and USO, multiply the results by the square root of 252 and further by 100, and refer to these newly obtained
variables (time series) as GK S&P 500 and GK USO. GK S&P 500 and GK USO are comparable to VIX and OVX since they are measured
on the same scale.

In the top plot of Fig. 1 S&P 500 and USO are plotted, in the middle plot VIX, OVX, GK S&P 500 and GK USO are displayed, and in
the bottom plot of the figure the natural logarithms of VIX, OVX, GK S&P 500 and GK USO are presented, hereafter denoted as LVIX,
LOVX, LGK S&P 500 and LGK USO. The summary statistics for the four time series in the middle plot of Fig. 1 are given in Table 1,
whereas the summary statistics for the four time series in the bottom plot of Fig. 1 are given in Table 2.

We can observe that GK S&P 500 and GK USO (or LGK S&P 500 and LGK USO) are rather noisy compared to VIX and OVX (or LVIX
and LOVX). This is not surprising, since GK are estimates of volatility for a particular day, whereas implied volatility is calculated for
a 30-day period, therefore effectively averaging out differences between individual days.

From Tables 1 and 2 we can also see that the realized volatility time series have lower mean values compared to the implied
volatility time series. The reason for this is that even though implied volatility is often considered as an expectation of future
volatility, it is not expected volatility. Implied volatility usually reflects both expected volatility and volatility risk premium. In other
words, an option trader is willing to sell options to buyers only as long as he, on average, earns some profit by doing so. If he would
price options in such a way that implied volatility would be equal to expected volatility, he would, on average, not earn any profit
from it. Therefore, options are usually priced in such a way that implied volatility is higher than expected volatility. It is also obvious
that OVX (LOVX) is generally higher than VIX (LVIX), which implies that oil market is generally more volatile than stock market.

The period of Great Recession from the end of 2007 till the middle of 2009 is depicted by the two red vertical solid lines in Fig. 1.

Fig. 1. Top plot: S&P 500 (black) and USO (blue). Middle plot: VIX (black), GK S&P 500 (gray), OVX (blue) and GK USO (lightblue). Bottom plot: LVIX (black), LGK S&P
500 (gray), LOVX (blue) and LGK USO (lightblue). The Great Recession, the Arab spring and the Oil price fall are depicted by the solid, dashed and dotted red vertical
lines. (For interpretation of colours in this figure, the reader is referred to the web version of this article.)

2 The necessity to include the opening jump is the reason why we do not utilize realized volatility calculated from high-frequency data. High-frequency data allow
for more precise estimation of volatility, but only during the trading part of the day. Since we need to include the opening jump, high-frequency data would not be of
much help to us.
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This period is closely related to the period of financial crisis of 2007–2008 and the period of the subprime mortgage crisis of
2007–2009. During these periods, the stock market was highly volatile. The decreased economic growth in many sectors (manu-
facturing, transportation etc.) also decreased the demand for energy products, which led to falling and volatile oil prices.

Recovery from the Great Recession started in 2009 but the Arab Spring of 2011–2012 was a major geo-political event which
played its role in the oil market due to the uncertainty in the level of oil production in the affected countries. This period is depicted
by the two red vertical dashed lines in Fig. 1.

The period of oil price fall from the middle of 2014 till 2015 due to (or accompanied by) a long-term slowdown of several major
economies such as China, Russia etc., alternative ways of reaching oil resources (hydraulic fracking) and OPEC’s members decision as
of November 2014 to maintain oil production at the usual levels is depicted by the two red vertical dotted lines in Fig. 1. During this
period, volatility increased slightly in the stock market and more profoundly in the oil market. This period also overlaps with the
Russian financial crisis (2014–2017) and with the Chinese stock market crisis (2015–2016).

4. Results

From Fig. 1 and Tables 1 and 2, it is obvious that LVIX, LOVX, LGK S&P 500 and LGK USO are less skewed and more Gaussian
compared to VIX, OVX, GK S&P 500 and GK USO. Consequently, the logarithmic time series will be used in further analysis. Using the
logarithmic time series also offers an appealing interpretation since changes in these time series can be directly interpreted as
percentage changes in the original time series.

The corrected wavelet power spectra3 for LVIX and LOVX are presented in Fig. 2. Time is given on the horizontal axis, while
Fourier period4 P in (trading) days is depicted on the vertical axis. The colour in the plots captures the values of the corrected wavelet
power spectrum (see the colour bars on the right side of the plots) and the cone of influence is separated by the U-shaped white curve.

Fig. 2 reveals that major variability in LVIX occurs at Fourier periods larger than 32 days. The variability at these Fourier periods
is pronounced especially during the Great Recession, during the start of the recovery from the Great Recession, and during the Arab
Spring. Noticeable variability in LVIX at Fourier periods shorter than 32 days is present during the Oil price fall. In LVOX, a pro-
nounced variability at Fourier periods larger than 64 days occurs during the Oil price fall, but is also present during the Great
Recession and the Arab Spring. Not much variability is present at Fourier periods shorter than 64 days.

Because of the noise present in LGK S&P 500 and LGK USO, corrected wavelet power spectra for LGK S&P 500 and LGK USO (not
presented in any figures) exhibit major variability not only at large Fourier periods (64 days and larger), but also at short ones (2–16
days).

Squared wavelet coherence between LVIX and LOVX is depicted in Fig. 3. The red colour in the figure denotes values of wavelet
coherence close to one, whereas the blue colour denotes values of wavelet coherence close to zero (see the colour bar on the right side
of the figure). Relative phase is depicted by arrows only in those regions - in agreement with the suggestion of Ge (2008), see
Section 2 - where the corresponding squared wavelet coherence is larger or equal to the 70th percentile of the distribution of the
squared wavelet coherence. Generally, the value of relative phase is equal to the angle formed by the positive horizontal axis (the
initial side) and the line of the arrow (the terminal side). The angle can take any value from − π to and π. For example, if the arrow
points to the right, relative phase is equal to zero and no delay is present between the time series. If the arrow points upwards, relative

Table 1
Summary statistics (mean, median, standard deviation, interquartile range, minimum, maximum, skewness and excess kurtosis) for VIX, OVX, GK S&P 500 and GK
USO.

mean median st. dev. IQR min max skew ex. k.

VIX 21.4 18.5 9.8 9.5 10.3 80.9 2.3 6.8
OVX 37.6 34.6 14.5 15.8 14.5 100.4 1.3 2.2
GK S&P 13.0 10.3 10.1 8.2 1.9 124.4 3.6 21.9
GK USO 30.7 25.8 18.9 19.7 3.1 161.5 1.9 5.1

Table 2
Summary statistics (mean, median, standard deviation, interquartile range, minimum, maximum, skewness and excess kurtosis) for LVIX, LOVX, LGK S&P 500 and LGK
USO.

mean median st. dev. IQR min max skew ex. k.

LVIX 2.98 2.92 0.37 0.49 2.33 4.39 0.99 0.88
LOVX 3.56 3.54 0.37 0.44 2.67 4.61 0.08 -0.01
LGK S&P 2.37 2.33 0.59 0.77 0.65 4.82 0.42 0.48
LGK USO 3.26 3.25 0.56 0.75 1.13 5.08 0.13 -0.07

3 The R software (R Core Team, 2017) and the biwavelet R package (Gouhier et al., 2016) have been used to obtain various wavelet-analysis figures presented in the
text.
4 The Fourier period P is given as =P f1/ .
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phase is π/2 and LVIX leads LOVX by π/2 in phase. If the arrow points downwards, relative phase is − π/2 and LVIX lags behind
LOVX by π/2 in phase. Results of squared wavelet coherence and relative phase for LGK S&P 500 and LGK USO are presented in
Fig. 4.

Let us discuss the results for LVIX and LOVX at first. The relationship is time-varying. LVIX and LOVX are strongly correlated at
most Fourier periods from the middle of the year 2009 till the middle of the year 2012 (which covers the start of the recovery from
the Great Recession and the start of the Arab Spring), whereas outside these dates the correlation is mostly strong at Fourier periods
larger than 32 days and mostly not so strong at shorter ones. This conclusion holds in general - specifically, the squared wavelet
coherence mostly increases with Fourier period, which can be observed in the top plot of Fig. 5 where the squared wavelet coherence
averaged over time is depicted by the black line. The averaged squared wavelet coherence peaks at Fourier periods close to 1 year and
decreases as we move towards shorter Fourier periods, such as 1 month or 1 week, or towards Fourier periods longer than 1 year. This
suggests that in the long run (i.e. in the dynamics associated with approx. 1-year Fourier periods) LVIX and LOVX are much more
tightly connected than in the medium or short run (i.e. in the dynamics associated with approx. 1-month or 1-week Fourier periods).

Fig. 2. Corrected wavelet power spectra for LVIX (top plot) and LOVX (bottom plot). The value of the corrected wavelet power spectrum is depicted in colour. The semi
transparent regions at the left and right boundary of the plots separated by the white U-shaped curves are the cones of influence. The Great Recession, the Arab spring
and the Oil price fall are depicted by the solid, dashed and dotted white vertical lines. (For interpretation of colours in this figure, the reader is referred to the web
version of this article.)

Fig. 3. Squared wavelet coherence and relative phase between LVIX and LOVX. The value of squared wavelet coherence is depicted in colour and the value of relative
phase by arrows. The semi transparent region at the left and right boundary of the figure separated by the white U-shaped curve is the cone of influence. The Great
Recession, the Arab spring and the Oil price fall are depicted by the solid, dashed and dotted white vertical lines. (For interpretation of colours in this figure, the reader
is referred to the web version of this article.)
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Fig. 4. Squared wavelet coherence and relative phase between LGK S&P 500 and LGK USO. The meaning of the colours, arrows, the U-shaped region and the white
vertical lines is analogous to that of Fig. 3.

Fig. 5. Top plot: Squared wavelet coherence between LVIX and LOVX (black curve) and between LGK S&P 500 and LGK USO averaged over time (blue curve). Note that
the range of the y-axis is from 0.3 to 1.Middle plot: Relative phase between LVIX and LOVX averaged over time (black curve) ± the corresponding standard deviation
(the gray region). Bottom plot: Relative phase between LGK S&P 500 and LGK USO averaged over time (the blue curve) ± the corresponding standard deviation (the
light blue region). Note: Values of the squared wavelet coherence in the cone of influence are excluded from the calculation of the average in the top plot. Values of
relative phase in the cone of influence as well as those which correspond to regions with squared wavelet coherence below the 70th percentile of the distribution of
squared wavelet coherence are excluded from the calculation of average phase and from the calculation of the corresponding standard deviation in the middle and
bottom plot. (For interpretation of colours in this figure, the reader is referred to the web version of this article.)
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Relative phase (in regions with sufficiently large squared wavelet coherence) seems to be very close to zero at all Fourier periods
with some events in the time-frequency plane where LVIX seems to slightly lead LOVX.5 This is confirmed by the middle plot of Fig. 5
where relative phase is averaged over time6 and the average is plotted against Fourier period; see the black curve in the middle plot of
Fig. 5. The boundaries of the gray regions in the plot correspond to the average relative phase ± the standard deviation7 of the
relative phase. The width of the gray region at a particular Fourier period tells us how the distribution of relative phase is variable.
Taking the standard deviation of relative phase into account, we can see that relative phase is on average effectively zero at all
Fourier periods. The only exceptions are Fourier periods slightly shorter than 100 days or 200 days where the average values of
relative phase are above zero and the standard deviation is relatively small. These exceptions are associated with the following
regions in Fig. 3: a.) the Great Recession and Fourier periods slightly shorter than 100 days, b.) the Arab Spring and Fourier periods a
little shorter than 200 days, and c.) the epoch starting approx. one year before the Oil price fall and Fourier periods round 200 days.
In all these regions LVIX seems to slightly lead LOVX.

A likely reason why the VIX index slightly leads the OVX index is the fact that the VIX index is in general much more important.
VIX index is calculated from options which are more liquid than options used to calculate the OVX index. Moreover, neither VIX nor
OVX are tradable (nobody can buy either of these indices directly). However, various derivatives (futures, options, exchange traded
funds and exchange traded notes) with the VIX index as an underlying asset are actively traded (Bordonado et al., 2017), whereas no
such derivatives exist for the OVX index as an underlying asset. All these factors may cause that the VIX index reacts to new
information faster than the OVX index, and therefore leads the OVX index.

By comparing Fig. 4 with Fig. 3, it can easily be discerned that concerning the dynamics at Fourier periods larger than 64 days, the
squared wavelet coherence and relative phase between LKG S&P 500 and LGK USO are very similar to those between LVIX and LOVX,
the difference being that LKG S&P 500 and LGK USO seem to be a little less correlated during the Arab Spring and slightly more
correlated during the Oil price fall and the epoch prior to this fall when compared to the correlation between LVIX and LOVX.
Moreover, there is a smaller total area in the time-frequency plane where LKG S&P 500 leads LGK USO compared to the area where
LVIX leads LOVX. This could indicate that in some cases, expectations about future volatility, which were transmitted from equity to
oil market, did not materialize in the actual (realized) volatility.

We can also note that LGK USO is correlated with and leads LGK S&P 500 at the scale of approximately 64 days from the
beginning of 2013 through the beginning of 2014 (see Fig. 4), while such a relationship is not observed between implied volatilities
(Fig. 3). In order to interpret this, we have to again remember that implied volatilities reflect the expectations about the future. This
means that the behavior which happened in realized volatilities was not anticipated beforehand by implied volatilities. Further, a
possible reason why realized volatility of the oil market was correlated with and leading the realized volatility of the stock market
could be that the oil price played a more important role during the calm year 2013 than in other years.

At Fourier periods shorter than 64 days LGK S&P 500 and LGK USO are seen to be less correlated and generally not so steady in
relative phase when compared to LVIX and LOVX. This is also confirmed by Fig. 5 where the time-averaged squared wavelet co-
herence and the time-averaged relative phase are plotted as a function of Fourier period for both pairs of time series. The reason for
the lower squared wavelet coherence and for the “unsteady” relative phase between LKG S&P 500 and LGK USO (when compared to
the case of LVIX and LOVX) can presumably be explained by noticing that both the time series of Garman–Klass estimates of realized
volatility are rather noisy and the noise dominates the dynamics at Fourier periods of 32 days and less. The presence of the noise
generally leads to a decrease in the correlation between LKG S&P 500 and LGK USO and to an unsteady relative phase at Fourier
periods lower than 1 week.

As documented in Fig. 5, the strongest comovement between the implied as well as between the realized volatility time series
occurs round the Fourier period of 210 days. Consequently, in Fig. 6 we plot the wavelet squared coherence and relative phase for the
Fourier period of one year (252 trading days) as a function of time. It is obvious that the relationship between the implied as well as
between the realized volatility time series is time-varying at this Fourier period. Further, LVIX seems to slightly lead LOVX at this
Fourier period, while the lead of LGK S&P 500 before LGK USO is less pronounced. This is in accordance with what we observed
previously.

It should also be noted that missing arrows in Fig. 3 do not imply that no lead/lag relationship is present since arrows are plotted
only in those regions where the corresponding squared wavelet coherence is sufficiently large as explained in the previous text. This
can be demonstrated, for example, for the Fourier period of one year at the end of 2012 and the beginning of 2013 where no arrows
are plotted in Fig. 3 since the squared wavelet coherence has decreased a lot, but LVIX still leads LOVX (see Fig. 6). The likely reason
for the decrease in the squared wavelet coherence is the aftermath of the Arab Spring, during which oil price was subject to more
idiosyncratic shocks which translated into weaker comovement with the stock market.

Next we look at the comovement between the VIX and OVX from a viewpoint of VIX being the independent, and OVX being the
dependent variable. Cross-wavelet gain between LOVX (response variable) and LVIX (explanatory variable) is depicted in Fig. 7.
Regions associated with the green colour correspond to events where a change in LVIX is accompanied by a change in LOVX of a
similar size. Light/dark blue colours correspond to regions where a change in LVIX is accompanied by a slightly smaller/much
smaller change in LOVX. On the other hand, light/dark red colours correspond to regions where a change in LVIX is accompanied by a

5 There are also some events in the time-frequency plane where LOVX seems to lead LVIX. However, these events seem to be less frequent than the events where
LVIX leads LOVX.
6 Circular average is used to calculate the average relative phase.
7 Circular standard deviation is used to calculate the standard deviation of relative phase.
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slightly larger/much larger change in LOVX. Analogously to Fig. 3, relative phase is depicted by arrows in the regions where the
squared wavelet coherence is larger or equal to the 70th percentile of the distribution of the squared wavelet coherence - the value of
the cross-wavelet gain will be interpreted and discussed only in these regions since this helps us to understand the nature of the
comovement in the regions where the time series are strongly correlated.

Since changes in LVIX and LOVX can be directly interpreted as percentage changes of VIX and OVX, the interpretation of Fig. 7 is
straightforward. Specifically, during the dates from the start of the year 2010 till the end of the year 2012 (which covers the start of
the recovery from the Great Recession, and also the Arab spring) percentage changes of VIX in regions with large squared wavelet
coherence (which correspond mostly to Fourier periods of 16 days and larger) are accompanied by percentage changes of OVX of a
similar size. This is in agreement with Fig. 1 where medium and long-run changes in LVIX and LOVX are correlated and comparable
in size during these dates. During the Great Recession, percentage changes of VIX in regions with large squared wavelet coherence
(and especially those regions where Fourier periods are larger than 16 days) are generally accompanied by slightly smaller per-
centage changes of OVX. This is also in agreement with Fig. 1 where long-run changes of LVIX are correlated with long-run changes of
LOVX of smaller amplitudes. Approximately one year before the Oil price fall, percentage changes of VIX in regions with large
squared wavelet coherence and Fourier periods of 64 days and larger are accompanied by percentage changes of OVX with larger
amplitudes.

We present the cross-wavelet gain only for the case where VIX is the independent and OVX the dependent variable and not vice

Fig. 7. Cross-wavelet gain between LOVX (response variable) and LVIX (explanatory variable). The cross-wavelet gain is depicted in colour. The value of relative phase
is depicted by arrows in exactly the same regions as in Fig. 3, i.e. in the regions with a high value of squared wavelet coherence. The semi transparent region at the left
and right boundary of the figure separated by the white U-shaped curve is the cone of influence. The Great Recession, the Arab spring and the Oil price fall are depicted
by the solid, dashed and dotted white vertical lines. (For interpretation of colours in this figure, the reader is referred to the web version of this article.)

Fig. 6. Squared wavelet coherence and relative phase between LVIX and LOVX and between the LGK S&P 500 and LGK USO for the Fourier period of 252 days. Note
that the left vertical axis ranges from 0.7 to 1. The Great Recession, the Arab spring and the Oil price fall are depicted by the solid, dashed and dotted red vertical lines.
(For interpretation of colours in this figure, the reader is referred to the web version of this article.)
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versa since, as follows from Eqs. (5) and (9), the cross-wavelet gain for the latter case is equal to the squared wavelet coherence
divided by the cross-wavelet gain for the former case. Consequently, the two cross-wavelet gains are complementary, the latter cross-
wavelet gain bringing no new information which would not be included in the former cross-wavelet gain. Our choice of VIX being the
independent and OVX the dependent variable is natural in the view of the previous results where VIX was seen to lead OVX.

5. Conclusions

We have employed wavelet analysis to study the relationship between the stock market and oil market volatility. We used the
logarithm of volatility of the S&P 500 equity index and USO oil fund and of their implied volatilities VIX and OVX.8 Wavelet analysis
allowed us to study both the frequency as well as the temporal aspect of the relationship.

As expected, our findings show that the implied volatility of the equity market (VIX) and the implied volatility of the oil market
(OVX) are highly correlated. This result is in accordance with Liu et al. (2013) who also find strong relationship between the OVX and
VIX. However, the correlation between the stock and oil market volatility, whether measured as implied or realized volatility, is time-
varying and depends on the time scale. It is strongest at Fourier periods round 210 days and gets weaker as we decrease or increase
the Fourier period. Moreover, the VIX index slightly leads the OVX index, while this feature is weaker between realized volatilities.

We also have several more specific findings. Namely, during the Great Recession LVIX was correlated with LOVX especially at
Fourier periods larger than 64 days. LVIX is suggested to have slightly led LOVX. A one percentage change of VIX was generally
accompanied by a percentage change of OVX of a smaller size. This suggests that the Great Recession primarily affected the stock
market, the impact on the oil market happening simultaneously or with a slight delay, and with lower amplitude.

Further, from the middle of 2009 till 2012 (which covers the start of the recovery from the Great Recession and the Arab Spring)
LVIX generally exhibited strong correlation with LOVX at most of the explored Fourier periods, while slightly leading LOVX at some
events in the time-frequency plane. A one percentage change of VIX was generally accompanied by an approximately one percentage
change of OVX at most Fourier periods. This suggests that the recovery from the Great Recession demonstrated itself very similarly in
both the markets with the stock market slightly leading the oil market.

Further, the Oil price fall (and the overlapping epochs of the Russian financial crisis and the Chinese stock market crisis) resulted
in the correlation of LVIX and LOVX at several Fourier periods and impacted the oil market more strongly than the stock market
despite the fact that the stock market led the oil market at some events.

Our results have implications both for general understanding of financial markets as well as for traders and other market par-
ticipants exposed to the volatility of the oil and stock market. We found that volatilities of the oil and stock market are more strongly
correlated on yearly horizon than on horizons of several days. This implies that diversification benefits for traders or investors
exposed to volatility of both the oil and the stock market in the horizon of a few days are higher than for traders or investors on the
yearly horizon.
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